1-20 of 202 Search Results for

microstructural transformation

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001574
EISBN: 978-1-62708-223-5
...). Visual and binocular inspection at 64+ revealed presence of cracks and complete washout of coating in the working area of the failed punch. Comparison of metallographic cross sections of used and unused punches revealed a significant microstructural transformation in case of the used punch. Presence...
Image
Published: 01 June 2019
Fig. 1 Photograph showing transformed microstructure (a) with crack (350×), (b) grain coarsening (600×). More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
...-alloy carbon steel spheroidization SEM backscattered electron analysis microstructural transformation T12 (chromium-molybdenum low-alloy carbon steel) Introduction Low-alloy CrMo carbon steels, such as T12, T22, and T23, are widely used as high-temperature economiser tubes (e.g., waterwall...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
.... The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... austenitizing time is determined by dividing the total time in the furnace between heating time (the time necessary to bring the part to the austenitizing temperature) and transformation time (the time required to produce the desired microstructural transformation or to complete the desired diffusion process...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... the seam. As can be seen from Figs. 4 , 5 , 6 , 7 , 8 , the structure of the welding seam is composed of a number of different microstructures of different carbon content and at different transformation stages. Fig. 1 Views of the tube specimens. 1 ×. Mid-portions. Fig. 2 Views...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... surrounded by regions of oxidation that appeared to facilitate crack propagation Fig. 5 Microstructure near the thin edge of the rotor adjacent to the gas passage. (a) General structure. 60x. (b) Ferritic matrix with transformation products. 300x. (c) Oxidation surrounding a thermal fatigue crack. 60x...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition to the weld. Thus...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture. boiler tube fracture corrosion pits salt incrustation carbon steel thermal fatigue striations dimples microstructural analysis plastic strain A192 (carbon steel) UNS K01201...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... a chip breaker in the cutting tool or changing the microstructure of the workpiece steel. For example, heat treating AISI 1008 brake piston cups by reheating to the austenitizing region with a short soaking time and quenching transformed the microstructure from pearlite-ferrite to martensite-bainite...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
... oxidation limit for plain carbon steel is 454 °C (850 °F), while for Grade T22 it is approximately 580 °C (1075 °F). A spheroidized microstructure with graphite nodules indicated that tube 1 was operating at a temperature significantly above its oxidation limit and below its lower transformation temperature...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
.... Optical microscopic examination of the two weld beads revealed different etching responses: the internal bead showed a transformed microstructure, and the external bead showed an as-solidified microstructure. Microstructural analysis of the transformed weld metal microstructure (Internal bead) showed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
... failures whereby components that cracked either during or immediately after the heat treatment/quenching operation were sectioned for metallographic examination of the microstructure to examine the degree of phase transformation. Examination of premature tensile specimen failures by scanning electron...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
..., whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001671
EISBN: 978-1-62708-234-1
.... The flow stress of a material is sensitive to temperature, and tends to decrease with increasing temperature. The adiabatic shear process is a result of deformation generated heat that cannot escape a localized region quickly enough to prevent a microstructural change which results in a transformation band...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001193
EISBN: 978-1-62708-229-7
... into the blades inadmissible localized overheating of the steel must have occurred, which resulted in transformation stresses and hence reduced deformability. The cracks arose as a consequence of careless brazing. Whether the cracks should be considered as stress cracks over their entire extent or partially...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... austenitized during the heating part of the thermal cycle. The part that does not transform into austenite becomes tempered. Microstructure in this zone consists of refined ferrite and pearlite with minor amount of tempered martensite as seen in Fig. 7(e) . Figures 7(f) , 8(e) and 9(c) show...
Image
Published: 01 June 2019
Fig. 1 Microstructure of component that cracked during quenching. Phase transformation from γ to α′ martensite was incomplete and indicative of cooling rate <50°C. More