Skip Nav Destination
Close Modal
By
Adrian Pierorazio, Nicholas E. Cherolis, Michael Lowak, Daniel J. Benac, Matthew T. Edel
Search Results for
microstructural assessment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 187 Search Results for
microstructural assessment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
.... The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... (4.65 in.) thick vessel shell wall failed due to elevated-temperature stress rupture (creep failure), which was indicated by the extensive bulging, microcracking, and void formation on its outside surface. Figure 23 shows the stress-rupture voids near the outside surface. Microstructural assessment...
Abstract
This article addresses the effects of damage to equipment and structures due to explosions (blast), fire, and heat as well as the methodologies that are used by investigating teams to assess the damage and remaining life of the equipment. It discusses the steps involved in preliminary data collection and preparation. Before discussing the identification, evaluation, and use of explosion damage indicators, the article describes some of the more common events that are considered in incident investigations. The range of scenarios that can occur during explosions and the characteristics of each are also covered. In addition, the article primarily discusses level 1 and level 2 of fire and heat damage assessment and provides information on level 3 assessment.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... Abstract Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... investigator is that of a materials failure analyst looking at fracture surfaces or examining the microstructure for degradation, microstructural changes, or unusual crack morphologies. With the advent of life assessment methodologies the investigator's responsibilities have expanded to be an integral part...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Abstract Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
.... The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... Fig. 1 A comparison between a typical cavitation pit and erosion assisted degradation [ 7 ] Abstract Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... formation and microstructural catalogues are discussed in more detail in the article “Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing” in this Volume. Specific transitions are known for common Fe-Cr-Mo alloys, such as the sequence...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001279
EISBN: 978-1-62708-215-0
... an optical metallographic microscope to assess microstructure and internal and external surface conditions. The typical microstructure in the failed area is shown in Fig. 3 . Creep voids were evident near the rupture, in addition to graphite nodules. The typical microstructures in the remote rings from...
Abstract
Tube 3 from a utility boiler in service for 13 years under operating conditions of 540 deg C (1005 deg F), 13.7 MPa (1990 psi) and 1,189,320 kg/h (2,662,000 lb/h) incurred a longitudinal rupture near its 90 deg bend while Tube 4 from the same boiler exhibited deformation near its bend. Metallographic examination revealed creep voids near the rupture in addition to graphite nodules. Exposure of the SA209 Grade T1A steel tubing to a calculated mean operating temperature of 530 deg C (983 deg F) for the 13 years resulted in graphitization and subsequent creep failure in Tube 3. The deformation in Tube 4 was likely the result of steam washing from the Tube 3 failure. Graphitization observed remote from the rupture in Tube 3 and in Tube 4 indicated that adjacent tubing also was susceptible to creep failure. In-situ metallography identified other graphitized tubes to be replaced during a scheduled outage.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
..., which was made to determine if there were serious concerns about their continued operation. Three tubes were provided, the material being specified as ASTM A209. One of the tubes was much less oxidized than the others. Representative microstructures are shown in Figure 1 . The tube that had...
Abstract
Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each case.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001814
EISBN: 978-1-62708-241-9
... failed due to elevated temperature stress rupture (creep failure), which was indicated by the extensive bulging, microcracking, and void formation on its outside surface. Figure 24 shows the stress rupture voids near the outside surface. Microstructural assessment of the shell wall indicated...
Abstract
A pressure vessel failed causing an external fire on a nine-story coke gasifier in a refinery power plant. An investigation revealed that the failure began as cracking in the gasifier internals, which led to bulging and stress rupture of the vessel shell, and the escape of hot syngas, setting off the fire. The failure mechanisms include stress relaxation cracking of a large diameter Incoloy 825 tube, stress rupture of a 4.65 in. thick chromium steel shell wall, and the oxidation of chromium steel exposed to hot syngas. The gasifier process and operating conditions that contributed to the high-temperature degradation were also analyzed and are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001693
EISBN: 978-1-62708-228-0
... showed evidence of burning from a torch. This tank failure was the catalyst for the introduction of new rules concerning the inspection and assessment of older storage tanks. Inspection Storage tanks Storage tank steel Brittle fracture The authors were involved in investigating the failure...
Abstract
A four-million gallon capacity (15,142 cu m) oil storage tank ruptured upon filling after re-erection near West Elizabeth, PA on 2 Jan 1988. The tank shell split vertically with failure originating at a flaw existing prior to the reconstruction. Brittle fracture occurred both up and down from the defect when the stress induced by filling reached a critical value for the steel, which had poor toughness properties. This steel had been used in the original construction of a tank in Ohio more than 40 years previously. The defect at which brittle fracture originated in the tank shell showed evidence of burning from a torch. This tank failure was the catalyst for the introduction of new rules concerning the inspection and assessment of older storage tanks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001669
EISBN: 978-1-62708-229-7
... of In-Place Analysis ,” Microstructural Science , Vol. 12 , ASM , Metals Park, OH , pp. 537 – 549 ( 1985 ). 2. Roberts B. W. et al. , “ Metallographic Techniques for Estimation of Residual Creep Life ,” to be published in Proceeding of EPRI Conference on Life Extension and Assessment...
Abstract
As the result of a leak detected in a plate-formed header at PENELEC'S Shawville Unit No. 3, an extensive failure investigation was initiated to determine the origin of cracking visible along the longitudinal weld seam. Fabricated from SA387-D material and designed for a superheater outlet temperature of 566 deg C, the 11.4 cm thick header had operated for approximately 187,000 h at the time of the failure. Discussion focuses on the results of a metallographic examination of boat samples removed from the longitudinal seam weldment in the vicinity of the failure and at other areas of the header where peak temperatures were believed to have been reached. The long-term mechanical properties of the service-exposed base metal and creep-damaged weld metal were determined by creep testing. Based on the utility's decision to replace the header within one to three years, an isostress overtemperature lead specimen approach was taken, whereby failure of a test specimen in the laboratory would precede failures in the plant. These tests revealed approximately a 2:1 difference in life for the base metal as compared to weld metal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001689
EISBN: 978-1-62708-233-4
... to the manufacturer. Fig. 2 Cutting sequence used for metallographic examination of shaft failure. Figure 3 shows the shaft fracture face sectioned, while Figure 4 shows the microstructure approximately 10 mm from the fracture face. Fig. 3 Microstructure at the fracture face of the shaft...
Abstract
The drive shaft on a centrifugal pump fractured after five months of operation. The fracture occurred at a packing gland inside a sleeve against which the packing material sealed. The shaft and sleeve were of duplex stainless steel. In contrast to a previous conclusion that heating had caused property deterioration resulting in embrittlement and fracture, it was concluded that the shaft must have fractured (most probably by fatigue cracking originating at the change of section) and that heating had then taken place from friction between the rotating input shaft and the remaining part attached to the pump. High temperature was thus a result, not the cause, of the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
.../Identification Material and Weld Metallography Microstructural Analysis Sections were cut from the expansion joint and prepared for metallographic examination by grinding, polishing, and etching. The prepared sections were examined using a metallurgical microscope to assess microstructure...
Abstract
A type 430Ti stainless steel flue gas expansion joint cracked because of caustic-induced stress-corrosion cracking. Energy-dispersive X-ray spectroscope analysis of the fracture surface deposits revealed the presence of sodium and potassium—caustics in hydroxide form. Primary fracture surfaces were all similar in appearance, and a primary crack origin could not be identified. A secondary crack brought to fracture in the laboratory showed brittle, cleavage features rather than classic, tensile overload features. This suggested that the material was embrittled.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... 690 100 249 0.0098 ID 710 103 0.0 0.0 OD −230 −34 254 0.010 OD −350 −51 (a) Positive numbers indicate tensile stresses Fig. 5 Optical micrograph of representative microstructure of one spring, including a dispersion of fine precipitate. 244×. Fig. 6...
Abstract
To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring was installed in a separate heavy truck engine in an application in which spring failure can cause total engine destruction. The springs were composed of chromium-silicon steel, with a hardness ranging from 50 to 54 HRC. Chemical composition and hardness were substantially within specification. Failure initiated from the spring inside coil surface. Examination of the fracture surface using scanning electron microscopy showed no evidence of fatigue. Final fracture occurred in torsion. X-ray diffraction analysis revealed high inner-diameter residual stresses, indicating inadequate stress relief from spring winding. It was concluded that failure initiation was caused by residual stress-driven stress-corrosion cracking, and it was recommended that the vendor provide more effective stress relief.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
.... This alloy is cast by the precision investment method. Investigation Metallographic examination revealed that the cracks were thermal fatigue cracks and had emanated from the leading edges of the airfoil and progressed along grain boundaries ( Fig. 1 ). The microstructure also showed evidence of age...
Abstract
A turbine vane made of cast cobalt-base alloy AMS 5382 (Stellite 31; composition: Co-25.5Cr-10.5Ni-7.5W) was returned from service after an undetermined number of service hours because of crack indications on the airfoil sections. This alloy is cast by the precision investment method. Analysis (visual inspection, 100x/500x metallographic examination of sections etched with a mixture of ferric chloride, hydrochloric acid, and methanol, and bend tests) supported the conclusions that cracking of the airfoil sections was caused by thermal fatigue and was contributed to by low ductility due to age hardening, subsurface oxidation related to intragranular carbides, and high residual tensile macrostresses. No further conclusions could be drawn because of the lack of detailed service history, and no recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001248
EISBN: 978-1-62708-221-1
... of the case (white in colour) and the unaffected portion of the case (dark etching) were 940 and 724 HV respectively. The white area is obviously the result of a change in the microstructure due to reformation of austenite and martensite by the heat of friction. Figures 3 and 4 show the original structure...
Abstract
Failure occurred in the teeth of a case-hardening Ni-Cr-Mo alloy steel spur gear in the transmission system of heavy duty tracked vehicles. The defects were in the nature of seizure on the involute profile. Scrutiny of the transmission system showed there might be choking in the lubricating oil line. Such would cause seizure of the gears and damage. The incidence of such defects stopped after corrective measures were taken.
1