Skip Nav Destination
Close Modal
By
Wesley D. Pridemore
By
D. F. Susan, K.H. Eckelmeyer, A.C. Kilgo
By
M.E. Stevenson, S.L. Lowrie, R.D. Bowman, B.A. Bennett
By
Tim A. Jur
By
B. Aksakal, O.S. Yildirim, H. Gul
By
Michael E. Finn, John M. Tartaglia
By
James F. Lane, Daniel P. Dennies
Search Results for
microconstituents
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 24
Search Results for microconstituents
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Use of EPMA to Identify Microconstituents in a Failed Extrusion Press
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
... in any unusual microconstituents or contaminants at the origin. In this examples, EPMA was used to determine the composition of the fatigue fracture-origin site that was not a normal origin site based on stress analysis or stress concentrations. An unusually high concentration of inclusions...
Abstract
A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.
Book Chapter
Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries. gas turbine engine components creep deformation overheating nickel-base superalloy interdendritic stress-rupture fracture stress-rupture testing stress-rupture life Cast nickel...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Book Chapter
Failure of a Muffle for a Brazing Furnace
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046956
EISBN: 978-1-62708-232-7
... an abnormally high copper content. Metallographic examination of a cross-sectional specimen, also from the failed area, revealed the presence of a microconstituent foreign to the alloy; this constituent, probably a nickel-copper intermetallic phase, was observed in the grain boundaries throughout the entire...
Abstract
A brazing-furnace muffle 34 cm (13 in.) wide, 26 cm (10 in.) high, and 198 cm (78 in.) long, was fabricated from nickel-base high-temperature alloy sheet and installed in a gas-fired furnace used for copper brazing of various assemblies. The operating temperature of the muffle was reported to have been closely controlled at the normal temperature of 1175 deg C (2150 deg F); a hydrogen atmosphere was used during brazing. After about five months of continuous operation, four or five holes developed on the floor of the muffle, and the muffle was removed from service. Analysis (visual inspection, x-ray spectrometry, and metallographic examination) supported the conclusion that the muffle failed by localized overheating in some areas to temperatures exceeding 1260 deg C (2300 deg F). The copper found near the holes had dripped to the floor from assemblies during brazing. The copper diffused into the nickel-base alloy and formed a grain-boundary phase that was molten at the operating temperature. The presence of this phase caused localized liquefaction and weakened the alloy sufficiently to allow formation of the holes. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... heated at temperatures between 1095 and 1315 °C (2000 and 2400 °F) The microconstituents present in the grains would have been dissolved at grossly elevated temperatures and would have been of much finer size if they had subsequently precipitated out of solid solution during the final 16 h of firing...
Abstract
One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed by metallurgical examination that it had failed as a result of intergranular fissuring and oxidation (creep rupture). The ruptured area revealed that the header had failed by conventional long-time creep rupture as a result of exposure to operating temperatures probably between 900 and 955 deg C. Three samples from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate the remaining headers. All headers were revealed by ultrasonic readings to be in an advanced stage of creep rupture and no areas were found to be fissured to a degree that they needed immediate replacement. As a conclusion, the furnace was deemed serviceable and it was established that in the absence of local hot spots, the headers would survive for a reasonable period of time.
Book Chapter
Fracture of Cast Steel Equalizer Beams
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... below the fracture surfaces of both beams. Internal cracking and cold shuts, such as those shown in Fig. 1(c) , were evident adjacent to the fracture surfaces. The microstructure of the beams consisted of transformation products and ferrite ( Fig. 1d ). The microconstituents exhibited some evidence...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Book Chapter
Metallurgical Failure Analysis of a Propane Tank Boiling Liquid Expanding Vapor Explosion (BLEVE)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001821
EISBN: 978-1-62708-241-9
... to above approximately 750 °C and transforms to austenite. The subsequent two-phase swell then fills the tank and cools the steel rapidly enough to transform the austenite to relatively brittle microconstituents, such as martensite, bainite, or fine pearlite. These microconstituents exhibit reduced...
Abstract
A fire in a storage yard engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of the truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, following the girth welds that connect them to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on the metallography of the tank pieces, the approximate tank temperature at the onset of explosion was determined. Metallurgical analysis provided additional insights as well as a framework for making tanks less susceptible to this destructive failure mechanism.
Book Chapter
Metallurgical Failure Analysis of Cold Cracking in a Structural Steel Weldment: Revisiting a Classic Failure Mechanism
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
.... This microconstituent can only be formed when the structure is subject to very high cooling rates to temperatures below which martensite starts to form from austenite (M S ). Bainite formation in this alloy also requires very rapid cooling but does not require cooling to below the MS temperature. Based...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Book Chapter
Biologically Induced Corrosion and Consequent Fracture of a Pump Shaft Coupling
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
... was high in sulfates. The nonmetallic deposit found where corrosive activity was well developed is characteristic of attack by sulfate-reducing microbes. 6 The indication, therefore, is that the organism involved is of a variety that was preferentially attacking the MnS microconstituent and metabolizing...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Book Chapter
Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... that the implant was broken at the stem. Segregation, inclusions, and microconstituents are aligned and elongated in directions determined by the metal flow, resulting in mechanical fibering. Centerline segregation in the ingot caused center cracks in forging operations, and this acted as a stress concentrator...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Book Chapter
Prevention of Machining-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... Preferential dissolution of microconstituents Contamination Embrittlement by the chemical absorption of elements such as hydrogen and chlorine Pits or selective etch Corrosion Stress corrosion Thermal Heat-affected zone Recast or redeposited material Resolidified material Splattered...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... is dispersed and heated to plasma temperatures. The metal atoms, excited by the heat, emit light waves that have known correspondences to particular elements. A drawback of all wet methods is that if there are microconstituents that are not easily soluble in the commonly available acids, erroneous results...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Book Chapter
Mechanical Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... Designed for thin films/coatings and microconstituents Dynamic rebound hardness testing Scleroscope hardness Hardness Requires a flat surface Component must be of sufficient thickness and mass Leeb (Equotip) hardness Hardness Requires a flat surface Component must be of sufficient...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... information can be obtained by chemical analysis in the SEM and by microstructural examination. Use of the SEM for microstructural examination in addition to optical light examination may be appropriate depending on the scale of microconstituents present. Intergranular Fatigue Most fatigue...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... and by microstructural examination. Use of the SEM for microstructural examination in addition to optical light examination may be appropriate, depending on the scale of microconstituents present. Intergranular Fatigue Most fatigue and corrosion fatigue cracks are transgranular, although IG fatigue...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Book Chapter
Practices in Failure Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Book
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Book Chapter
Forms of Corrosion
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Book Chapter
Failures Related to Welding
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
1