Skip Nav Destination
Close Modal
Search Results for
metalworking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 98 Search Results for
metalworking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... Abstract This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... principles, the manufacturing and materials engineer must first decide whether the machining process has altered surface layers. The application of surface integrity principles generally adds cost to the manufacturing and metalworking processes; therefore, surface monitoring and damage alteration prevention...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... Abstract The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089429
EISBN: 978-1-62708-223-5
... Abstract The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had...
Abstract
The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had shattered suddenly with a bang which caused a chip to be dislodged and cause the injury. A large nonmetallic inclusion parallel to the axis near the center of the drill was revealed in an unetched longitudinal section. Carbide bands in a martensitic matrix were indicated in an etched sample. It was concluded by the plaintiff's metallurgist that the failed drill was defective as the steel contained nonmetallic inclusions and carbide segregation which made it brittle. It was revealed by the defendant that the twist drill met all specifications of M1 high-speed steel and investigated several other drills without failure to prove that the failure was caused by use in excessive conditions. It was revealed by examination that the point of the broken drill was not the original point put on at manufacture but came from regrinding. Both technical and legal details have been discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
... 6150 UNS G61500 Metalworking-related failures The face of a 6150 flat spring was under tensile stress. Although small flaws were visible on the surface ( Fig. 1 ), the failure began at the dark spot on the edge, where roughness resulted from shearing during the blanking operation...
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001541
EISBN: 978-1-62708-235-8
... proved the crack to be a forging defect called a cold shut. Because defects of this type are usually detected when the raw forging is inspected, this occurrence was considered to be an isolated instance. Cold shuts Cracking (fracturing) Forgings 7075-T6 UNS A97075 Metalworking-related failures...
Abstract
A forging of 7075-T6 aluminum alloy, which formed a support for the cylinder of a cargo door, cracked at an attachment hole. Fluorescent penetrant inspection showed the crack ran above and below the hole out onto the machined flat surface of the flange. A 6500x electron fractograph proved the crack to be a forging defect called a cold shut. Because defects of this type are usually detected when the raw forging is inspected, this occurrence was considered to be an isolated instance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0047158
EISBN: 978-1-62708-226-6
..., and the inspection of the finished product will help detect obscure seams. Cracking (fracturing) Forceps Forgings Seams Stainless steel Metalworking-related failures The pointed ends of several stainless steel forceps split or completely fractured where split portions broke off ( Fig. 1 ). All...
Abstract
The pointed ends of several stainless steel forceps split or completely fractured where split portions broke off. All the forceps were delivered in the same lot. The pointed ends of the forceps are used for probing and gripping very small objects and must be true, sound, and sharp. Analysis supported the conclusion that the failures to be the result of seams in the steel that were not joined during hot working. Recommendations included that closer inspection of the product take place at all stages of manufacturing. Inspection at the mill will minimize discrepancies at the source, and the inspection of the finished product will help detect obscure seams.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048128
EISBN: 978-1-62708-225-9
... steel Surface treatment related failures Metalworking-related failures Figure 1 shows light streaks arranged in a diagonal direction on the wire surface. The streaks are parallel to the wire axis. A darker depressed area is visible between the streaks and below the center of the fractograph...
Abstract
A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were revealed by careful examination. A hard material (mill scale) was assumed to have been impressed during drawing of the wire and was broken out during peening, leaving the depressions with sharp-bottomed corners. Spring was concluded to have failed due to a surface defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001195
EISBN: 978-1-62708-227-3
... to fatigue by the notch effect of coarse scale-filled folds formed during forging. Connecting rods Forging defects Steel Metalworking-related failures Fatigue fracture The connecting rod was broken in two places at the small end. The general view of the reassembled pieces in Fig. 1 shows...
Abstract
A connecting rod from a motor boat was broken in two places at the small end. At position I there was a fatigue fracture brought about by operational stress, whereas the fibrous fracture surface II was a secondary tensile fracture. Furthermore the transition on the other side of the rod was cracked symmetrically to the fatigue fracture (position III). Magnetic inspection showed indications of cracking at the transition between the rod and small end in six other connecting rods from the same batch. Metallographic investigation showed the connecting rods were rendered susceptible to fatigue by the notch effect of coarse scale-filled folds formed during forging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048787
EISBN: 978-1-62708-235-8
... at a lower temperature to avoid formation of ferrite streaks. Cracking (fracturing) Fire extinguishers Overheating Spinning (metals) 1541 UNS G15410 Metalworking-related failures The top of a fire-extinguisher case ( Fig. 1a ) was closed by spinning. The case was made from 1541 steel tubing...
Abstract
Leakage from the top of a fire-extinguisher case, made of 1541 steel tubing and closed by spinning was observed during testing. Three small folds were observed on the surface by visual examination and one was sectioned. A very fine transverse fissure through the section was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation is done at a lower temperature to avoid formation of ferrite streaks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048131
EISBN: 978-1-62708-225-9
... in the load test due to the split wire. The reason for the condition was interpreted to be overdrawing which resulted in intense internal strains, high circumferential surface tension, and decreased ductility. Ductility Strain Surface tension Wire drawing Spring steel Metalworking-related failures...
Abstract
The springs formed from 3.8 mm diam cold-drawn carbon steel wire failed to comply with load-test requirements. A split wire in the spring was revealed by investigation. A smooth heat-tinted longitudinal zone was observed in the fracture. It was concluded that the spring failed in the load test due to the split wire. The reason for the condition was interpreted to be overdrawing which resulted in intense internal strains, high circumferential surface tension, and decreased ductility.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047154
EISBN: 978-1-62708-223-5
... fissures at the fold zones. Cracking (fracturing) Folds Forgings Fe-0.4C-0.34Cr Metalworking-related failures A head of a socket spanner made of heat-treated 0.40C-0.34Cr steel cracked in service. One half of the head, longitudinally sectioned, is shown in Fig. 1(a) in the as-received...
Abstract
The head of a socket spanner made of heat-treated 0.40C-0.34Cr steel cracked in service. The pronounced fibrous structure of the component became evident as soon as it was etched with 2% nital. Folds in the material originating from the shaping process were visible, and the micrograph showed that cracks ran along these folds oriented according to the fiber. The fissures, with the exception of the hardening crack, were partly filled with oxide and showed signs of decarburization at the edges. From this it could be assumed that parts of the external skin had been forced into the folds during forging. This evidence supported the conclusion that even through there was some indication of chemical segregation, the folds made during forging initiated the main crack. Furthermore, even if the steel had been more homogeneous, hardening cracks would probably have been promoted by the coarse fissures at the fold zones.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047151
EISBN: 978-1-62708-227-3
.... No recommendations were made. Connecting rods Folds Forgings Carbon steel Metalworking-related failures Fatigue fracture A motorboat-engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The locations of the fracture surfaces...
Abstract
A motorboat engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The analysis (visual inspection, 50x micrographs of sections etched with 2% nital, magnetic-particle inspection, and metallographic examination) supported the conclusion that the connecting rods were rendered susceptible to fatigue-crack initiation and propagation by the notch effect of coarse folds formed during the forging operation. One fracture was caused by fatigue resulting from operating stresses, and the other was a secondary tensile fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001262
EISBN: 978-1-62708-224-2
... that the real damage was done during the heat-up forging (drop-forging) and could not be removed during heat-treatment. Chains Cracking (fracturing) Drop forgings Overheating 30CrMoV 9 Metalworking-related failures A chain link which was part of the hoisting mechanism of a drop hammer broke...
Abstract
A chain link which was part of the hoisting mechanism of a drop hammer broke after three or four months of service. It was reportedly manufactured of the heat resistant steel 30 Cr-Mo-V 9 (Material No. 1.7707). The fracture of the chain link had a conchoidal structure and ran along the austenitic grain boundaries. Such fractures are characteristic results of strong overheating. The coarse-grained, coarse acicular heat-treated structure of the chain link confirmed overheating. Because temperatures in excess of 1150 deg C are required for the solution of impurities, it is more probable that the real damage was done during the heat-up forging (drop-forging) and could not be removed during heat-treatment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001183
EISBN: 978-1-62708-223-5
... of copper, nickel, and cobalt. A steel of similar composition, X38Cr-MoV5 1 (W-No. 2343) was used for hot working tools. The sliver originated from a damaged press tool. Hot working Impurities Studs Aluminum Metalworking-related failures In a continuously cast aluminum press stud two small...
Abstract
In a continuously cast aluminum press stud, two small foreign metal slivers were found that had caused difficulties with the cable sheathing press. Spectroscopic examination revealed the slivers consisted of a chromium-molybdenum-vanadium steel with minor (unintentional) additions of copper, nickel, and cobalt. A steel of similar composition, X38Cr-MoV5 1 (W-No. 2343) was used for hot working tools. The sliver originated from a damaged press tool.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046182
EISBN: 978-1-62708-218-1
... surfaces before machining and before putting the part into service. Connecting rods Forgings Nonmetallic inclusions 15B41 UNS H15411 Fatigue fracture Metalworking-related failures A connecting cap ( Fig. 1a ) from a truck engine fractured after 65,200 km (40,500 miles) of service. The cap...
Abstract
A connecting cap from a truck engine fractured after 65,200 km (40,500 mi) of normal service. The cap was made from a 15B41 steel forging and was hardened to 29 to 35 HRC. Visual examination of the fracture surface disclosed an open forging defect across one of the outer corners of the cap. The defect extended approximately 9.5 mm (3/8 in.) along the side of the cap. The fracture surface exhibited beach marks typical of fatigue. The surface of the defect was stained, indicating that oxidation occurred either in heat treatment or in heating during forging. Deep etching of the fracture surface revealed grain flow normal for this type of forging, but no visible defects. 400x metallographic examination of a section through the fracture surface showed that the microstructure was an acceptable tempered martensite. However, oxide inclusions were present at the fracture surface. This evidence supported the conclusion that fatigue fracture initiated at a corner of the cap from a forging defect that extended to the surface. Fatigue cracking was propagated by cyclic loading inherent in the part. Recommendations included more careful fluorescent magnetic-particle inspection of the forged surfaces before machining and before putting the part into service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001456
EISBN: 978-1-62708-229-7
... an internal plug. The diam of this portion of the tube was reduced by local collapse and folding of the section rather than by longitudinal extension of the tube itself. Defects Optical microscopy Superheaters Tubemaking Steel tube Metalworking-related failures Corrosion fatigue A tube...
Abstract
An unusual type of defect was discovered during hydraulic testing of a water-tube boiler after repairs to the superheater tubes following erosion from soot-blowers. When the pressure reached 700 psi, slight leakage was found to be taking place from one of the superheater tubes in a region where there appeared to be a split, approximately 8 in. long. What was thought to be a split was actually a pronounced fold. Microscopic examination showed that a corrosion-fatigue fissure had developed from one of the inside corners of the fold, presumably as a result of the fluctuating bending stresses to which this portion of the tube would be subjected because of the discontinuity in the tube wall. It was from this fissure that the leakage occurred. It was evident that the defect developed during the manufacture of the tube, probably in the course of a drawing or rolling operation without an internal plug. The diam of this portion of the tube was reduced by local collapse and folding of the section rather than by longitudinal extension of the tube itself.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047161
EISBN: 978-1-62708-235-8
... environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure. Cracking (fracturing) Forgings Seams Shafts (power) Surface defects 4130 UNS G41300 Metalworking-related failures Routine magnetic-particle inspection revealed crack...
Abstract
Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis of the shaft cross section revealed that the crack was approximately 0.5 mm (0.020 in.) deep and oriented in a radial direction. Furthermore, no stringer-type nonmetallic inclusions were observed in the vicinity of the flaw, which did not display the intergranular characteristics of a quench crack. The defect did, however, contain substantial amounts of oxide, which evidently resulted from the hot-working operation. This evidence supports the conclusion that the appearance of this discontinuity, with the long axis parallel to the working direction and radial orientation with regard to depth, strongly suggests a seam produced during rolling. Use of components with surface-defect indications as small as 0.5 mm (0.02 in.) can be risky in certain circumstances. Depending on the orientation of the flaw with respect to applied loads, the nature of the applied forces (for example, cyclic), and the operating environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001194
EISBN: 978-1-62708-235-8
... the influence of tensile stresses that arose during bending. This phenomenon is known as “solder brittleness.” Bending Boiler tubes Brittleness Overheating 15Mo 3 Metalworking-related failures A seamless hot-drawn boiler tube NW 300 of 318 mm O. D. and 9 mm wall thickness made of steel 15 Mo 3...
Abstract
A seamless hot-drawn boiler tube NW 300 of 318 mm OD and 9 mm wall thickness made of steel 15Mo3 was bent with sand filling after preheating allegedly to 1000 deg C. In the process it had cracked repeatedly in the drawn fiber. The composition corresponded to specifications, but exceptionally high copper content was noticeable. Microstructural examination showed the damage was due to overheating and burning during preheating and bending. Furthermore, crack formation was promoted by precipitation of metallic copper that had penetrated into the austenitic grain boundaries under the influence of tensile stresses that arose during bending. This phenomenon is known as “solder brittleness.”
1