1-20 of 1440 Search Results for

metals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling. backscattered electron imaging economy test elemental composition analysis energy-dispersive spectrometry failure analysis metals microchemical analysis referee test specimen...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... Abstract Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... propagation fractography metals microscale models root-cause failure analysis specimen preparation void coalescence void nucleation THE CONCEPT OF DUCTILE AND BRITTLE BEHAVIOR generally applies to the macroscopic scale. However, there is no universally accepted transition point from ductile...
Image
Published: 01 January 2002
Fig. 41 Three micromechanisms of fracture in metals. (a) Ductile fracture. (b) Cleavage fracture. (c) Intergranular fracture. Source: Ref 43 More
Image
Published: 01 January 2002
Fig. 13 Incubation time of different metals and alloys (frequency = 21.1 kHz; distance between specimen and vibration horn = 0.9 mm; vibration amplitude = 35 μm; temperature = 20 °C; liquid: water). Source: Ref 30 More
Image
Published: 01 January 2002
Fig. 14 Erosion rate of different metals and alloys (frequency = 20 kHz; specimen mounted in vibration horn; vibration amplitude = 50 μm; temperature = 20 °C; liquid: distilled water). Source: Ref 2 More
Image
Published: 01 January 2002
Fig. 18 Erosion rate of metals in mineral oil (frequency = 20 kHz; specimen mounted in vibration horn; vibration amplitude = 50 μm; liquid: mineral oil, viscosity at 20 °C = 110 cS). Source: Ref 35 More
Image
Published: 01 January 2002
Fig. 11 Examples of fracture surfaces in face-centered cubic (fcc) metals. (a) Austenitic 316L stainless steel with variable sizes of equiaxed/tensile dimples. 690×. Courtesy of Mohan Chaudhari, Columbus Metallurgical Services. (b) 2014-T6 aluminum alloy where unstable rapid fracture exhibits More
Image
Published: 01 January 2002
Fig. 21 Simplified deformation behavior (Ashby) maps of unalloyed annealed metals with (a) face-centered cubic crystal structure and (b) body-centered cubic crystal structure. Engineering alloys may behave somewhat differently than unalloyed metals, but these general trends are relatively More
Image
Published: 01 January 2002
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by the black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More
Image
Published: 01 January 2002
Fig. 5 Effect of abrasive hardness on wear behavior of metals and ceramics. Source: Ref 7 More
Image
Published: 01 January 2002
Fig. 4 Notch sensitivity versus notch radius for various metals. Approximate values (note shaded band). Not verified for deep notches thickness/radius. Source: Ref 9 More
Image
Published: 01 January 2002
Fig. 16 Galvanic attack at a water pipe joint involving dissimilar metals More
Image
Published: 01 June 2019
Fig. 8 Free energy diagram for the formation of sulfides of various metals. Source: Ref 3 More
Image
Published: 01 June 2019
Fig. 1 Microstructures of weld metals in T joints of ASTM A285, grade B, steel. (a) Submerged arc weld in a galvanizing vat that failed by molten-zinc corrosion along elongated ferrite bands such as those shown. Etched with 2% nital. 100x. (b) Multiple-pass manual shielded metal arc weld More
Image
Published: 01 June 2019
Fig. 2 Sketch from the Metals Handbook introductory failure analysis article. Source: Ref 1 More
Image
Published: 15 January 2021
Fig. 17 Simplified deformation behavior (Ashby) maps of unalloyed annealed metals with (a) face-centered cubic crystal structure and (b) body-centered cubic crystal structure. Engineering alloys may behave somewhat differently than unalloyed metals, but these general trends are relatively More
Image
Published: 15 January 2021
Fig. 8 Mean stress sensitivity, M , for different metals. K t = 1 to 5; N = 10 4 to 10 6 ; probability of failure = 50%. Source: Ref 5 More
Image
Published: 15 January 2021
Fig. 3 Galvanic series of metals and alloys in seawater. Alloys are listed in order of the potential they exhibit in flowing seawater; those indicated by a black rectangle were tested in low-velocity or poorly aerated water and at shielded areas may become active and exhibit a potential near More