Skip Nav Destination
Close Modal
By
R.K. Dayal, J.B. Gnanamoorthy, Metallurgy Division, G. Srinivasan
By
Louis Raymond, Ernest G. Kendall
By
S.R. Freeman
By
W. M. Williams, Mark Firth
By
Sushil K. Chauhan
By
Carmine D'Antonio
By
Carmine D'Antonio
By
Carmine D'Antonio
Search Results for
metallurgy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 157
Search Results for metallurgy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
AISI D2 powder metallurgy die component that melted and deformed because of...
Available to PurchasePublished: 01 January 2002
Fig. 31 AISI D2 powder metallurgy die component that melted and deformed because of flame impingement during heat treatment. (a) End view. 4.5×. (b) Microstructure in the affected region. Etched with Marble's reagent. 150×
More
Image
Light micrograph of a melted region found on an AISI D2 powder metallurgy d...
Available to PurchasePublished: 01 January 2002
Fig. 33 Light micrograph of a melted region found on an AISI D2 powder metallurgy die after heat treatment. Specimen etched with Marble's reagent
More
Image
AISI D2 powder metallurgy die component that melted and deformed because of...
Available to PurchasePublished: 30 August 2021
Fig. 31 AISI D2 powder metallurgy die component that melted and deformed because of flame impingement during heat treatment. (a) End view. Original magnification: 4.5×. (b) Microstructure in the affected region. Etched with Marble’s reagent. Original magnification: 150×
More
Image
Published: 15 January 2021
Fig. 9 Initial galling failure on powder metallurgy tool steels. Reprinted from Ref 57 with permission from Elsevier
More
Image
Light micrograph of a melted region found on an AISI D2 powder metallurgy d...
Available to PurchasePublished: 15 January 2021
Fig. 42 Light micrograph of a melted region found on an AISI D2 powder metallurgy die after heat treatment. Specimen etched with Marble’s reagent
More
Book Chapter
Corrosion Failure of Stainless Steel Components During Surface Pretreatment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001282
EISBN: 978-1-62708-215-0
Abstract
Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed that one of the components was in a highly sensitized condition and that the pickling and passivation had resulted in severe intergranular corrosion. The other component was fabricated from thick plate and, after machining, the outer surface represented the transverse section of the original plate. Pickling and passivation resulted in severe pitting because of end-grain effect. Strict control of heat treatment parameters to prevent sensitization and modification of pickling and passivating conditions for machined components were recommended.
Image
Cross sections of through- and case-hardened metallurgies. In practice, dep...
Available to Purchase
in Failure Analysis of Gears and Reducers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Cross sections of through- and case-hardened metallurgies. In practice, depending on the alloy, the through-hardened tooth hardness may vary slightly across the section.
More
Book Chapter
Failure of 17-4 PH Stainless Steel Bolts on a Titan Space Launch Vehicle
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Book Chapter
Analysis and Prevention of Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... the microstructure. Uniform wall thickness is approximately 2.9 mm (0.11 in.). 5×. Courtesy of S.R. Freeman, Millennium Metallurgy, Ltd. A metallurgical cross section was prepared through the pitted region. Figure 2(c) shows a 10× magnification of the cross section through the pitted region after etching...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
An Analysis of Six Fatigue Failures in Cranes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001057
EISBN: 978-1-62708-214-3
Abstract
A brass (CDA alloy 230) pipe nipple that was part of a domestic cold water bath system failed two weeks after installation. Macrofractography, SEM examination, metallography, and chemical analyses were performed on specimens cut through the main fracture surface. The physical and background evidence obtained indicated failure due to cracking initiated by stamped markings on the pipe wall and extended by high circumferential residual stresses. It was recommended that annealed pipe be used.
Book Chapter
Stress-Corrosion Cracking of C-Mn Steel in a CO 2 Absorber in a Chemical Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001067
EISBN: 978-1-62708-214-3
Abstract
The source of cracking in the circumferential weld seam in a JIS-SM50B carbon-manganese steel pipe used in a CO2 absorber was investigated, the absorber had been in service for 18 years. The seam had been weld-repaired twice, and the repair welds had been locally stress relieved. Longitudinal seams in the same vessel, which had been stress relieved in a furnace, showed no tendency toward cracking. The solution passing through the vessel contained CO2-CO-H20, KHCO, and Cl− ions. Nondestructive testing revealed that the cracks originated in the heat-affected zone and propagated into the base metal and weld. Severe branching of the cracks characteristic of stress-corrosion cracking was observed. Microexamination revealed that crack propagation was transgranular further supporting the possibility of stress-corrosion cracking. Simulation tests carried out in the vessel confirmed this mode of cracking. It was recommended that weld seams be furnace heat treated at a temperature of 600 to 640 deg C (1110 to 1180 deg F) for a minimum of 1 h per inch of section thickness.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001090
EISBN: 978-1-62708-214-3
Abstract
A stainless steel flexible connector failed after a short period of service. Visual examination of the failed part revealed that a fracture had occurred in the thin-walled stainless steel bellows brazed into the flanges at each end. Surface examination by SEM fractography showed that failure of the bellows occurred via fatigue. The crack in the bellows had widened considerably after the fracture, and the bellows had been severely compressed on the fracture side prior to failure. Based on these observations, it was concluded that bellows had been damaged prior to installation. The damage resulted in high mean tensile stresses upon which were superimposed cyclic stresses, with fatigue failure the final result.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001091
EISBN: 978-1-62708-214-3
Abstract
An ASTM A193-83a grade B7 (AISI 4140) steel turbine impeller shaft fractured after 2 months of service. Failure had initiated at three separate points around the periphery of the shaft, each associated with one of three keyways. SEM fractography, metallography, and chemical analysis indicated that the mechanism of fracture initiation was torsional fatigue. Intermittent deceleration and acceleration resulting from power surges during operation of the turbine caused torsional vibration and was considered the most probable source of the required cyclic stress. Final failure took place by torsional shear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001092
EISBN: 978-1-62708-214-3
Abstract
An AISI 4320 H transfer gear shaft that was part of a transmission sustained severe surface damage after 12 h of dynamometer testing at various gearing and torque loads. The damage was characterized by generalized wear and spalling. Examination of a cross section of the shaft that intersected undamaged, burnished, and surface-spalled zones revealed no anomalies in the chemistry, microstructure, or hardness that could have caused the damage. The physical evidence suggested that the operable mechanism was contact fatigue caused by misalignment of the shaft in the assembly.
Book Chapter
Failure of a Steel Wire Rope From a Television Tower
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001285
EISBN: 978-1-62708-215-0
Abstract
A 6 x 19 fiber core steel wire rope failed as it was being used to lower a steel television tower. Fracture of the rope occurred at a point under one of two clips used to fashion a spliced loop that was directly connected to the top of the tower. Microscopic examination of the fracture surfaces and the condition of the individual wires revealed that 59% of the wires failed by shear, 39% failed in tension, and 2% had been cut. In addition, 87% of the wires showed some degree of crushing damage, ranging from mild to severe. The failure was attributed to improper installation of the clips.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
Abstract
Two hot water reheat coil valves from a heating/ventilating/air-conditioning system failed in service. The values, a 353 copper alloy 19 mm (3/4 in.) valve and a 360 copper alloy 13 mm (1/2 in.) valve, had been failing at an increasing rate. The failures were confined to the stems and seats. Visual examination revealed severe localized metal loss in the form of deep grooves with smooth and wavy surfaces. Metallographic analysis of the grooved areas revealed uniform metal loss. No evidence of intergranular or selective attack indicating erosion-corrosion was observed, Recommendations included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001376
EISBN: 978-1-62708-215-0
Abstract
An AISI 9260 steel railroad spike maul failed after a relatively short period of service. The maul head fractured in two pieces when struck against a rail. Visual, fractographic, metallographic, and chemical analyses were conducted on sections taken from the maul head, which was found to have fractured across both sides of the eye. Failure occurred in at least three separate events: formation of two cracks immediately adjacent to the eye, extension of one of the original cracks over a portion of one of the eye sides, and abrupt extension of the original crack across the eye sides, resulting in separation into two halves.
Book Chapter
Fracture of a Trunnion Bolt Used To Couple Railway Cars
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001382
EISBN: 978-1-62708-215-0
Abstract
A trunnion bolt that was part of a coupling in a metropolitan railway system failed in service, causing cars to separate. The bolt had been in service for more than ten years prior to failure. Visual examination showed that the failure resulted from complete fracture at the grease port and surface groove located at midspan. Drillings machined from the bolt underwent chemical analysis, which confirmed that the material was AISI 1045 carbon steel, in accordance with specifications. Two sections cut from the bolt were subjected to metallographic examination and hardness testing. The fracture origin was typical of fatigue. The ultimate tensile strength of the bolt was in excess of requirements. Wear patterns indicated that the bolt had been frozen in position for a protracted period and subjected to repeated bending stresses, which resulted in fatigue cracking and final complete fracture. It was recommended that proper lubrication procedures be maintained to allow free rotation of the bolts while in service.
Book Chapter
Failure of a Stainless Steel Hip Fracture Fixation Device
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001264
EISBN: 978-1-62708-215-0
Abstract
A type 316L stainless steel “Jewett nail” hip implant failed after 2 months of service. Fracture occurred through the first of five screw holes in the plate section. Microscopic examination of mating fracture surfaces showed that failure had initiated at the outside (convex) surface of the plate and proceeded through its thickness. The fracture morphology was characteristic of fatigue. A beveled area on the inside surface of the plate indicated that the implant had been fractured for some time prior to removal. Metallographic examination of samples cut from the plate section revealed a series of hidden repair welds on the inside surface of the plate in the vicinity of the fracture. Comparison of the microstructure in the area of the fracture with that in an area away from the weld indicated that the repair welding had resulted in the creation of an annealed, softened zone. Manufacturers should never attempt to salvage this type of critical device by welding or any other procedure that might compromise its integrity.
1