1-20 of 244

Search Results for metallurgical factors

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... Abstract The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings. abrasive wear adhesive wear axial fatigue bending fatigue brittle fracture...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001283
EISBN: 978-1-62708-215-0
... Abstract During the preproduction stages of forging, an initial batch of 50 mm (2 in.) diam Al-4Cu alloy (L77) extruded bar stock material was found to be cracking randomly. Failure analysis was conducted to determine the metallurgical factors underlying the phenomenon. Microexamination...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048801
EISBN: 978-1-62708-229-7
... temperatures for short times during its service life and earthquake loadings acting on the pipeline. Several metallurgical factors were found during a laboratory analysis of samples from the failed pipe. However, two key pieces, the fracture area containing the fracture-initiation point and the end...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... in the vicinity of the fracture, that is, no recrystallization. Severely distorted annealing twins and deformation bands in face-centered cubic materials can also be seen. The degree of elongation varies with certain metallurgical factors, notably, prior condition of the metal and its susceptibility...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts. binder jet sintering directed energy deposition failure analysis metal products metallurgical characteristics powder bed fusion quality assurance ADDITIVE...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. It highlights how the failure of a component or system can affect the associated systems and the overall aircraft. This article does not address piloting, accident reconstruction, human factors...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Abstract Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... Abstract This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... Abstract This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... Abstract Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
... Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
... Abstract A bolt manufacturer observed that products made from certain shipments of steel 41 Cr4 wire were prone to the formation of quench cracks in their rolled threads. The affected wire was tested and found to be highly sensitive to overheating because of the metallurgical method by which...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... Abstract This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
... carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
... Abstract Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
... Abstract Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
..., component geometry, and also environmental and metallurgical factors. It is also not unusual to find other contributing factors, such as corrosion, fatigue, or material defects, involved in creep and stress-rupture failures. This article briefly reviews these factors as they relate to creep behavior...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
...-five years ago, the first paragraph of the text Analysis of Metallurgical Failures stated, “The primary reasons for conducting an analysis of a metallurgical failure are to determine and describe the factors responsible for the failure of the component or structure. This determination may...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
... and/or brittle grain-boundary phases (such as the niobium carbides), hot cracking generally appears as interdendritic fissures. Both mechanical and metallurgical factors cause hot cracking. Mechanical factors include the size and shape of the weld bead. Niobium is generally considered to be a potent contributor...