Skip Nav Destination
Close Modal
By
A. Matting, Ruth Ziegler
By
Phillip Green
By
D.K. Bhattacharya, Baldev Raj, E.C. Lopez, V. Seetharaman
By
S.P. Lynch, D.P. Edwards, R.B. Nethercott, J.L. Davidson
By
H. Krafft
By
William R. Warke
By
Julian Raphael, Roch J. Shipley, John Landes
By
John D. Landes, W.T. Becker, Roch S. Shipley, Julian Raphael
By
N.L. Baxter
By
Michelle Koul, Jennifer Gaies
By
K. Mogami, S. Saito, H. Makishita, K. Ando, N. Ogura
By
I. Roman, D. Rittel
Search Results for
metallic pressure bars
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 130
Search Results for metallic pressure bars
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001437
EISBN: 978-1-62708-220-4
... Abstract A steam jacketed autoclave of orthodox design was fabricated from mild steel for a working pressure of 320 psi. The only unusual feature in its construction was a protective layer of weld metal, which was deposited on the internal surface of the upper half of the 1 in. thick shell...
Abstract
A steam jacketed autoclave of orthodox design was fabricated from mild steel for a working pressure of 320 psi. The only unusual feature in its construction was a protective layer of weld metal, which was deposited on the internal surface of the upper half of the 1 in. thick shell. The first indication of latent trouble was provided by the bolts which attached the stirring paddles to the shaft and the stationary scraper blades to the shell, either failing in service or breaking off when an attempt was made to remove them. It was the practice to renew them all annually. Microscopic examination of a failed bolt showed the path of the fracture and the secondary cracking associated with it were intergranular, suggesting that failure resulted from stress corrosion. A steel of the rimming type had been used to make the bar from which the bolt was forged. Cracks which originate at the root of threads generally result from fatigue but, in this instance, their intergranular mode of progression indicated that they were due to stress-corrosion. Examination of shell material showed that the cracks in the vessel were wholly intergranular. It was apparent from this evidence that this cracking was also due to stress-corrosion.
Book Chapter
Brittleness in Copper and Copper Alloys With Particular Reference to Hydrogen Embrittlement
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001447
EISBN: 978-1-62708-235-8
... of low melting point eutectics or corrosion; show a similar appearance when investigated on a macroscopic scale. Conductors (devices) Plate metal Turbogenerators Copper Hydrogen damage and embrittlement This article originally appeared in the issue of “Der Maschinenschaden” for December...
Abstract
Hydrogen embrittlement is the brittleness affecting copper and copper alloys containing oxygen which develops during heat treatment at temperatures of about 400 deg C (752 deg F) and above in an atmosphere containing hydrogen. The phenomenon of hydrogen embrittlement of copper and its alloys is illustrated by examples from practice and reference is made to data from recent publications on the subject. Embrittlement due to this cause can only be identified by microscopic examination because other modes of failure in copper; e.g., from heat cracking, mechanical overload, the formation of low melting point eutectics or corrosion; show a similar appearance when investigated on a macroscopic scale.
Image
Failed nose landing gear socket assembly due to LMIE. (a) Overall view of t...
Available to PurchasePublished: 01 January 2002
fitting that was removed from the fractured lug. (b) The segment of the fractured lug (A) that remained attached to the launch bar. (c) The forward section of the lug shown in (b) after removal from the launch bar. Arrow A indicates the primary fracture side; arrow B, the secondary overload side. (d
More
Image
Failed nose landing gear socket assembly due to liquid-metal-induced embrit...
Available to PurchasePublished: 15 January 2021
Fig. 5 Failed nose landing gear socket assembly due to liquid-metal-induced embrittlement (LMIE). (a) Overall view of the air-melted 4330 steel landing gear axle socket. Arrow A indicates the fractured lug; arrow B, the bent but unfailed lug. Arrow C indicates the annealed A-286 steel
More
Book Chapter
Fatigue Failure of a Carbon Steel Piston Shaft on an Extrusion Press Billet-Loading Tray
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001287
EISBN: 978-1-62708-215-0
... for approximately four shifts per week for 2 months, after which the work rate was increased to three shifts per day until the occurrence of the failure 10 months later. Pertinent Specifications The billet-loading tray is of the split type, with one piston to each half. Air pressure is applied simultaneously...
Abstract
A recurring piston shaft failure problem on the billet-loading tray of an extrusion press was investigated. Two shafts fractured within a period of 10 days. The shaft was machined from normalized EN3 (AISI C1022) steel stock without further treatment. Visual, microstructural, chemical, and mechanical (hardness and tensile properties) analyses of failed shaft specimens were conducted. The examinations showed that the shafts had failed by fatigue. It was recommended that a low-alloy steel (e.g., 3% Ni-Cr) in the hardened and tempered condition and subjected to shot-peening surface-hardening treatment be used. The provision of a stop to reduce bending stresses was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047817
EISBN: 978-1-62708-233-4
...-related failures The pushrod shown in Fig. 1 fractured two weeks after it was installed in a mud pump operating at 160 rpm with a discharge pressure of 14.4 MPa (2.1 ksi). The pushrod was made by joining two pieces of bar stock by inertia welding. Each piece was rough bored or drilled to produce...
Abstract
A pushrod made by inertia welding two rough bored pieces of bar stock installed in a mud pump fractured after two weeks in service. The flange portion was made of 94B17 steel, and the shaft was made of 8620 steel. It was disclosed by visual examination that the fracture occurred in the shaft portion at the intersection of a 1.3 cm thick wall and a tapered surface at the bottom of the hole. The fatigue crack was influenced by one-way bending stresses initiated at the inner surface and progressed around the entire inner circumference. A heavily decarburized layer was detected on the inner surface of the flange portion and sharp corner was found at the intersection of the sidewall and bottom of the hole. It was concluded that the stress raiser due to the abrupt section change was accentuated by decarburized layer. As a corrective measure, the design of the pushrod was changed to a one-piece forging and circulation of atmosphere during heat treatment was permitted through a hole drilled in the flange end of the rod to avoid decarburization.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
.... Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods. damage tolerance design analysis fatigue damage mitigation fatigue life assessment fracture mechanics pressure vessels welds FATIGUE FAILURE of metal...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Book Chapter
Failures Related to Metalworking
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... Abstract This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Book Chapter
Multiple Cracking of 2 3 4 In. Thick Boiler Drum From Thermal Shock
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
... that the multiple cracking had developed prior to the pressure test, it extended through almost 90% of the thickness of the material leaving only a narrow band of metal ( 1 2 in. wide) adjacent to the inner surface which sheared on the occasion of the test. As the evidence suggested that the region...
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Book Chapter
Corrosion Failure of Stainless Steel Thermowells
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001326
EISBN: 978-1-62708-215-0
... were found to be leaking at the tips. Pertinent Specifications It was specified that the thermowells were to be fabricated from 20 mm (0.8 in.) diam AISI 316L stainless steel bar stock tested ultrasonically. All of the thermowells were to be able to withstand an internal pressure of 24.5 MPa...
Abstract
Pressure testing of a batch of AISI type 316L stainless steel thermowells intended for use in a nuclear power-plant resulted in the identification of leakage at the tips in 20% of the parts. Radiography at the tip region of representative thermowells showed linear indications along the axes. SEM examination revealed the presence of longitudinally oriented nonmetallic inclusions that were partly retained and partly dislodged. Electron-dispersive x-ray analysis indicated that the inclusions were composed of CaO. Based on the overall chemistry of the inclusion sites, the source of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible.
Book Chapter
Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
... Abstract Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
..., heat treatment, geometry, surface roughness, residual stress, etc.), cavitation resistance depends largely on liquid property, flow speed, vibration characteristics, temperature, hydrostatic pressure, and so on. For certain materials, cavitation resistance is related to hardness, but for most metallic...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Book Chapter
Alloy 430 Ferritic Stainless Steel Welds Fail due to Stress-Corrosion Cracking in Heat-Recovery Steam Generator
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld...
Abstract
Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld had received a postweld heat treatment (PWHT). Metallographic examination revealed that the corroded areas contained undertempered martensite. Fully tempered weld areas with a hardness of 93 HRB were not attacked. No evidence of corrosion fatigue was found. Uneven temperature control during PWHT was the most likely cause of failure.
Book Chapter
Hydrotest Failure of a Carbon Steel Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001053
EISBN: 978-1-62708-214-3
... relieved after welding. A515 pressure vessel plate is carbon steel made to a coarse grain practice (silicon killed) and is intended for elevated-temperature use. However, the code permitted the alloy to be used to −30 °C (−20 °F), the minimum design metal temperature of the vessel. Performance of Other...
Abstract
A carbon steel (ASTM A515 grade 70) pressure vessel failed by brittle fracture while being hydro tested in the fabricating shop. The fracture origin was a small crack at a welding arc strike associated with the toe of a nozzle weld. A fracture mechanics calculation indicated that this imperfection, although small, initiated fracture because of the local geometry and stress conditions and the low toughness of the steel. It was recommended that (1) the probability of flaws be reduced by welding over or grinding out arc strikes, (2) the local stresses be lowered by post weld stress relief and improved weld toe geometry, and (3) toughness be improved by specifying fine-grain steel and/ or by normalizing.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... the theory-of-elasticity approach are in directions that correspond to the geometrical construction of the body. For example, Cartesian coordinates can be taken along an axis of a bar and perpendicular to the axis. For round shapes such as pipes or pressure vessels, the radial, circumferential, and axial...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of the body. For example, Cartesian coordinates can be taken along an axis of a bar and perpendicular to the axis. For round shapes such as pipes or pressure vessels, the radial, circumferential, and axial directions can be chosen. These are taken for convenience in the analysis of the stresses...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Book Chapter
Case Studies from 25 Years of Troubleshooting Vibration Problems
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... Pumps Turbines Metal (Other, miscellaneous, or unspecified) failure (Other, general, or unspecified) fracture Cavitation wear Part I—Special Cases Case #1: Vibration in Hydroelectric Dam The entire structure of a hydroelectric dam would begin to vibrate whenever a hydroelectric turbine...
Abstract
Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems.
Book Chapter
An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... initiation concerns were ruled out since the union nuts experience minimal cyclic loading because of the fact that the systems maintain pressure at all times other than scheduled maintenance, which occurs approximately once every 18–24 months [ 5 ]. The lack of significant cyclic stress is substantiated...
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Book Chapter
Failure Analysis of Liquid Propane Gas Cylinder
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001142
EISBN: 978-1-62708-228-0
... Toughness of Metallic Materials. 4. Tada H. , Paris P.C. and Irwin G. , “The Stress Analysis of Cracks Handbook” , P2.1, Del Research Corporation, Hellertown, Pennsylvania( 1973 ) 5. JIS B 8243, Construction of Pressure Vessels Selected References Selected References...
Abstract
Several newly developed liquid propane gas (LPG) cylinders made from Fe-0.13C-0.42Mn steel failed, each fracturing in the longitudinal direction. One of the cylinders was thoroughly analyzed to determine the cause. Deep-drawing flaws were observed on the inner wall of the cylinder, oriented in the direction of the fracture and roughly equal in length. Flaws about 1.3 mm deep, steps, and a chevron pattern were observed on the fractured surface as were cleavage facets, revealed by SEM. Hardness was relatively high and the microstructure near the fracture surface appeared elongated. In addition, the stress intensity factor KI calculated from the value of the internal pressure was lower than that estimated by the fracture toughness test. All of this suggests that the tanks were not sufficiently annealed and prone to brittle fracture. The analysis thus proves that cracks initiated by deep-drawing flaws were the primary cause of failure.
Book Chapter
Failure Analysis of Pressurized Aluminum Cylinders and Its Applications to a Safer Design
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
... Abstract Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached...
Abstract
Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached prior to wall penetration, which could have led to subsequent loss of pressure, resulting in explosion of the cylinder. It was recommended that more stress corrosion resistant alloys be used for sea diving applications. Furthermore, cylinders should have a reduced wall thickness that can be determined employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures.
1