Skip Nav Destination
Close Modal
Search Results for
metal processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 664 Search Results for
metal processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... Abstract This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... International , 2002 , p 289 – 311 . 10.31399/asm.hb.v11.a0003517 • Mason P. , Engstrom A. , Agren J. and Hallstrom S. , Simulation of Diffusion in Surface and Interface Reactions , Metals Process Simulation , Vol 22B , ASM Handbook , Furrer D.U. and Semiatin S.L...
Abstract
Radiant tubes that failed prematurely in an ethylene cracking furnace were analyzed to determine the cause of their early demise. The tubes were made from austenitic heat-resistant steel and cracked along their longitudinal axis. New and used tubes were compared using scanning electron microscopy, energy dispersive x-ray spectrometry, and mechanical property testing. This provided critical information and revealed that improper coking and decoking had removed the protective oxide layer (Cr 2 O 3 ) that normally prevents coke deposits from forming on exposed surfaces. Without this layer, coke readily accumulates on the surface of the tubes, fueling carbon diffusion into the metal and a corresponding degradation in microstructure and loss of ductility at high temperatures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc...
Abstract
A steel galvanizing vat measuring 3 x 1.2 x 1.2 m (10 x 4 x 4 ft) and made of 19 mm thick carbon steel plate (ASTM A285, grade B)) at a shipbuilding and ship-repair facility failed after only three months of service. To verify suspected failure cause, two T joints were made in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... damage to the underlying metal results from direct contact between the abrasive and alloy ( Ref 19 ). The abrasives, along with the solution, serve to slowly remove the corrosion products and enhance the corrosion rate. The extent of this removal process is controlled by the particle size, angularity...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... stainless steel brazeability brazed joints brazing failure analysis BRAZING comprises a group of nonfusion joining processes that produce coalescence of materials by heating them to a suitable temperature and by using a filler metal having a liquidus temperature above 450 °C (840 °F) but below...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... section from group l, those samples taken in the as-received condition prior to processing. As polished. 87× Fig. 8 An interesting detail on the group 1 resistors was the presence of an amorphous dark-appearing phase dotting the interface between the cermet metallization and the thick-film...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
... ratio. Metallographic investigations revealed that the surface of the attacked pipes consisted of (Cr, Fe) carbide. The metal dusting was the result of a decomposition process (CO to CO2 + C) that deposited C on the pipe surface. Because of the high temperature, the C subsequently diffused through...
Abstract
In a HyL III heat exchanger's radiant pipes, metal dusting reduced the pipe thickness from 8.5 to 3 mm in just nine months, leaving craters on the inner surface. The pipes are fabricated from HK 40 alloy. The heated gas (400 to 800 deg C) consisted of CO, CO2, and H2, with a 4:1 CO/CO2 ratio. Metallographic investigations revealed that the surface of the attacked pipes consisted of (Cr, Fe) carbide. The metal dusting was the result of a decomposition process (CO to CO2 + C) that deposited C on the pipe surface. Because of the high temperature, the C subsequently diffused through the surface oxide layer (Cr2O3), triggering a succession of reactions that led to pitting and the formation of craters.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
.... discontinuities hot forming ingot casting metalworking defects nonferrous forging steel forging wrought metal products Introduction to Failures Related to Hot Forming Processes Wrought forms are produced by a wide variety of metalworking operations that can be roughly divided into bulk-working...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
..., production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001067
EISBN: 978-1-62708-214-3
... showing branching crack. 5×. Fig. 1 Absorber vessel to remove CO2 from the process gas. Fig. 3 Microphotograph of the crack, showing transgranular path through the base metal. 500×. Abstract The source of cracking in the circumferential weld seam in a JIS-SM50B carbon...
Abstract
The source of cracking in the circumferential weld seam in a JIS-SM50B carbon-manganese steel pipe used in a CO2 absorber was investigated, the absorber had been in service for 18 years. The seam had been weld-repaired twice, and the repair welds had been locally stress relieved. Longitudinal seams in the same vessel, which had been stress relieved in a furnace, showed no tendency toward cracking. The solution passing through the vessel contained CO2-CO-H20, KHCO, and Cl− ions. Nondestructive testing revealed that the cracks originated in the heat-affected zone and propagated into the base metal and weld. Severe branching of the cracks characteristic of stress-corrosion cracking was observed. Microexamination revealed that crack propagation was transgranular further supporting the possibility of stress-corrosion cracking. Simulation tests carried out in the vessel confirmed this mode of cracking. It was recommended that weld seams be furnace heat treated at a temperature of 600 to 640 deg C (1110 to 1180 deg F) for a minimum of 1 h per inch of section thickness.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... by a “killed” or “deoxidized” process, chemical reactions can continue in the ladle as the metal is being cast. Although the mills often test multiple specimens from a single ladle, they rarely report more than one of the analysis results on the certification. As long as all the elements remain “in spec...
Abstract
This article describes some of the common elemental composition analysis methods and explains the concept of referee and economy test methods in failure analysis. It discusses different types of microchemical analyses, including backscattered electron imaging, energy-dispersive spectrometry, and wavelength-dispersive spectrometry. The article concludes with information on specimen handling.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... whether the part will be made from metal, plastic, ceramic, or composite. Level II: Determine whether metal parts will be produced by a deformation process (wrought) or a casting process; for plastics, determine whether they will be thermoplastic or thermosetting polymers. Level III: Narrow...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided. draw panel analysis fractures necks...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
..., materials selection, and use problems: for example, underfill, part distortion, and poor dimensional control; tool overload and breakage; excessive tool wear; high initial investment due to equipment cost; poor material use and high scrap loss The movement of metal during these processes, whether...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
... metal loss. The digester is used to cook wood chips to break down lignin and release fibers, which are natural components of wood. The batch process begins with filling the vessel ( Fig. 1 ) with wood chips and white and black liquor. This slurry is heated to 205 °C (400 °F) under a pressure of 965...
Abstract
Routine inspections of a carbon steel wood pulp digester revealed a sharply increasing number of cracks in the overlay metal on the internal surface of the digester after 1 and 2 years of service. The weld overlay was composed of type 309 stainless steel on the top fourth of the digester and of a proprietary high-nickel material on the bottom three-fourths. Examination revealed three distinct modes of deterioration. General corrosion was linked to the use of unspecified overlay metal. Cracking resulted during installation from the use of a material susceptible to hot cracking. Deep corrosion fissures then developed at hot crack sites as a result of crevice corrosion. Use of the appropriate overlay material was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... in the process just upstream from the piping failure, mercury liquid metal embrittlement was the suspected mode of failure. The distinctive visual effects on the weld cap of the through-wall crack, such as the branch cracking and the gray staining, supported this hypothesis. Fortunately, this mode of failure...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... will be made from metal, plastic, ceramic, or composite. Level II: Determine whether metal parts will be produced by a deformation process (wrought) or a casting process; for plastics, determine whether they will be thermoplastic or thermosetting polymers. Level III: Narrow options to a broad...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001335
EISBN: 978-1-62708-215-0
... process that became concentrated in the recycled skimmings. It was recommended that future material specifications for skimmings and for externally obtained scrap copper include a trace analysis for tellurium. References References 1. Briant L.L. , Acta Metall. , Vol. 35 , 1987 , p 149...
Abstract
The causes of cracking of an as-drawn 90-10 cupronickel tube during mechanical working were investigated to determine the source of embrittlement. Embrittlement was sporadic, but when present was typically noted after the first process anneal. Microstructural and chemical analyses were performed on an embrittled section and on a section from a different lot that did not crack during forming. The failed section showed an intergranular fracture path. Examination of the fracture surfaces revealed the presence of tellurium at the grain boundaries. The source of the tellurium was thought to be contamination occurring in the casting process that became concentrated in the recycled skimmings. It was recommended that future material specifications for skimmings and for externally obtained scrap copper include a trace analysis for tellurium.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
...-centered cubic metal with a high level of chemical activity would show very strong adhesion ( Ref 2 ). During the adhesion process and material transfer, particles are removed from one contact surface and either permanently or temporarily attached to the other surface by a cold welding process, thus...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... carried out. To the uninitiated on the other hand, welding appears on obviously simple process and the apparent ease with which metal can be deposited has led to many instances of misuse. It has been applied to materials which are only weldable by special procedures, to the indiscriminate building-up...
Abstract
An intermediate shaft (3 in. diam), part of a camshaft drive on a large diesel engine, broke after two weeks of service. Failure occurred at the end of the taper portion adjacent to the screwed thread. The irregular saw-tooth form of fracture was characteristic of failure from torsional fatigue. A second shaft carried as spare gear was fitted and failure took place in a similar manner in about the same period of time. Examination revealed that the tapered portion of the Fe-0.6C carbon steel shaft had been built up by welding prior to final machining. A detailed check by the engine-builder established that the manufacture of these two shafts had been subcontracted. It was ascertained that the taper portions had been machined to an incorrect angle and then subsequently built-up and remachined to the correct taper. The reduction in fatigue endurance following welding was due to heat-affected zone cracking, residual stresses, the lower fatigue strength of the weld deposited metal, and weld defects.
1