Skip Nav Destination
Close Modal
Search Results for
met
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 251 Search Results for
met
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure of a Boiler Feed Pump Second-Stage Impeller
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 7 Optical micrographs of samples MET 3 and MET 4. (a) Profile of defect in MET 4 that intersects surface A on the left. The fracture surface is indicated as FS. .25×. (b) Higher-magnification view of the defect indicated by the arrow labelled P in (a). 400×. (c) Higher-magnification view
More
Image
Published: 30 August 2021
Fig. 22 Metallographic image from fracture origin at the outer diameter showing metal transfer, indicated by arrow
More
Image
in Failure of a Boiler Feed Pump Second-Stage Impeller
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 6 Optical micrographs of sample MET 3. Porous zone slightly removed from the primary fracture surface. Etched in Vilella's reagent. 25×.
More
Image
in Failure Investigation of Longitudinal Seam Welded Elevated Temperature Header
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 7 Comparison of creep curves for base material and longitudinal seam-weld metal at 665 C and 41.4 MPa.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001709
EISBN: 978-1-62708-229-7
Abstract
Several waterwall tubes in a power station boiler failed after ten years of service. The boiler is a suspension type equipped with 30 IK boxes where retractable soot blowers are inserted to clean the inside of the boiler using high-pressure steam. The tubes, which operate at 693 deg F (367 deg C) and 2935 psi (20.5 MPa), failed near the IK boxes as a result of thermal fatigue. Thermal fatigue damage was accelerated by repetitive exposure to water droplets from the soot blower and the associated rapid cooling.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
Abstract
Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications of polymers and the tribometers and instrumentation used to measure the tribological properties of polymers. The article discusses the processes involved in calculating the wear rate of polymers and the methods of characterization of the sliding interface. It provides information on the pressure and velocity limit of polymer composites and polymer testing best practices.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001544
EISBN: 978-1-62708-219-8
.... The arch rib top plate, as it met the main girder, formed a composite beam of A588/A36 composition. Investigation showed the original design of the failed component called for an angle of high geometric stress concentration (90 deg with no radius) in a region of substantial transverse weld joints. While...
Abstract
A large crack developed at a girder-truss joint area of the Fremont bridge in Portland, OR, on 28 Oct 1971. It occurred during a positioning procedure involving a junction piece welded to a girder, starting as a brittle fracture and terminating in plastic hinges in the girder web welds. The arch rib top plate, as it met the main girder, formed a composite beam of A588/A36 composition. Investigation showed the original design of the failed component called for an angle of high geometric stress concentration (90 deg with no radius) in a region of substantial transverse weld joints. While the material met chemical and mechanical property requirements, tests showed it had low fracture toughness and critical-sized flaws oriented normal to the principal stress in the failed junction piece. Fabrication procedures resulted in high residual stresses and a metallurgical notch at the radius in the junction piece. Stresses induced during jacking (the procedure used to raise bridge components into position) applied the stresses in the critical radius that triggered the cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001495
EISBN: 978-1-62708-221-1
... and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements...
Abstract
An axle shaft in an open-pit mining truck hauling overburden failed after operating for 27,000 h. Previous failures had resulted from longitudinal shear, but this had not, bringing material quality into question. Chemical analysis verified that the part was SAE4340 Ni-Cr-Mo alloy steel and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements and should have withstood normal operating conditions. The spacing of the gouge marks coincided with the spacing of the splines, indicative of careless assembly with the mating wheel gear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
.... Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001079
EISBN: 978-1-62708-214-3
.... The material was found to be a typical Cr-Mo-V steel, and it met the property requirements. No evidence of temper embrittlement was found. The analyses showed that the observed flaws were present in the original forging and attributed them to lack of ingot consolidation. A series of actions, including...
Abstract
Numerous flaws were detected in a steam turbine rotor during a scheduled inspection and maintenance outage. A fracture-mechanics-based analysis of the flaws showed that the rotor could not be safely returned to service. Material, samples from the bore were analyzed to evaluate the actual mechanical properties and to determine the metallurgical cause of the observed indications. Samples were examined in a scanning electron microscope and subjected to chemical analysis and several mechanical property tests, including tensile, Charpy V-notch impact, and fracture toughness. The material was found to be a typical Cr-Mo-V steel, and it met the property requirements. No evidence of temper embrittlement was found. The analyses showed that the observed flaws were present in the original forging and attributed them to lack of ingot consolidation. A series of actions, including overboring of the rotor to remove indications close to the surface and revision of starting procedures, were implemented to extend the remaining life of the rotor and ensure its fitness for continued service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001173
EISBN: 978-1-62708-218-1
... bath for 12 hours at 930 deg C. After tempering for 2 h at 170 to 175 deg C, the copper plate was removed by immersing in an acid bath for 45 min. The investigations found the microstructure, hardness, and chemistry all met the specification. The case depth was approximately 0.75 mm to 1.0 mm. The SEM...
Abstract
Ball joints made from carburized En 353 (BS970:815A16) steel failed after several hours of being fitted into vehicles. The parts were forged, machined, and thread rolled. The threads were copper plated to prevent carburization. The heat treatment consisted of carburizing in a cyanide bath for 12 hours at 930 deg C. After tempering for 2 h at 170 to 175 deg C, the copper plate was removed by immersing in an acid bath for 45 min. The investigations found the microstructure, hardness, and chemistry all met the specification. The case depth was approximately 0.75 mm to 1.0 mm. The SEM studies showed that it was a brittle fracture and completely intergranular to a depth of about 2.5 mm. It was concluded that the failure was due to hydrogen embrittlement for the following reasons: (i) failure did not occur immediately after loading, (ii) the fracture was intergranular to a depth of two to three times the case depth, (iii) secondary cracks were observed at the surface. The hydrogen was introduced during copper plate removal by acid dipping. If the tempering operation was performed after the acid dip operation, the hydrogen would have been driven out.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT...
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large...
Abstract
Within the first few months of operation of an 8 km (5 mile) long 455 mm (18 in.) diam high-pressure steam line between a coal-fired electricity-generating plant and a paper mill, several of the Inconel 600 bellows failed. The steam line operated at 6030 kPa (875 psi) and 420 deg C (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large amounts of sodium, calcium, potassium, aluminum, and sulfur, alkali, alkali earth, and other contaminants that completely permeated even the thin oxides on the fracture surfaces. Additional investigation of the purity of the steam itself as reported by the power plant showed that corrosion and cracks were ultimately caused by the steam. While under normal operation, the steam's purity posed no problem to the material, during boiler cleaning operations, the generating plant had allowed contamination to get into the steam line.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001642
EISBN: 978-1-62708-235-8
... made, because calculations of ideal critical diameter and analysis of available hardenability data indicated that the original hardness specification could be met. There was, however, less room for process variation. The parts ended up containing temper carbides, developed heavy decarburization...
Abstract
A plant had manufactured and heat treated their product in house for years. As time went on, the special steel that they had been using became more expensive, and a switch was made to a more common and less highly alloyed material. However, no change in hardness specifications were made, because calculations of ideal critical diameter and analysis of available hardenability data indicated that the original hardness specification could be met. There was, however, less room for process variation. The parts ended up containing temper carbides, developed heavy decarburization, and experienced excessive distortion because they were left in the furnace for extended and varying periods with the temperature “turned down a couple hundred degrees.”
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001579
EISBN: 978-1-62708-226-6
... of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture...
Abstract
Stainless steel is frequently used for bone fracture fixation in spite of its sensitivity to pitting and cracking in chloride containing environments (such as organic fluids) and its susceptibility to fatigue and corrosion fatigue. A 316L stainless steel plate implant used for fixation of a femoral fracture failed after only 16 days of service and before bone callus formation had occurred. The steel used for the implant met the requirements of ASTM Standard F138 but did contain a silica-alumina inclusion that served as the initiation point for a fatigue/corrosion fatigue fracture. The fracture originated as a consequence of stress intensification at the edge of a screw hole located just above the bone fracture; several fatigue cracks were also observed on the opposite side of the screw hole edge. The crack propagated in a brittle-like fashion after a limited number of cycles under unilateral bending. The bending loads were presumably a consequence of leg oscillation during assisted perambulation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047181
EISBN: 978-1-62708-233-4
... inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met...
Abstract
Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the compositional requirements of SAE 4140, the sulfur level was 0.022% and would account for the formation of the sulfide stringers observed. Apparently, the combination of the clustered, stringer-type inclusions and the quenching conditions were too severe for this component geometry. The result was a high incidence of quench cracks that rendered the parts useless. Recommendations included changing the specification, requiring the steel to have lower sulfur concentrations. Magnetic-particle cleanliness standards should be imposed that will exclude material with harmful clusters of sulfide stringers, for example, modified AMS 2301.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001551
EISBN: 978-1-62708-233-4
... Abstract A multi-million dollar, four-color printing press used to produce a major weekly magazine was breaking pinions (shouldered shafts) on rolls. The cause of fracture was cyclic fatigue. Steel quality and heat treatment met expected standards. The pinion fracture showed multiple origins...
Abstract
A multi-million dollar, four-color printing press used to produce a major weekly magazine was breaking pinions (shouldered shafts) on rolls. The cause of fracture was cyclic fatigue. Steel quality and heat treatment met expected standards. The pinion fracture showed multiple origins indicating rotational vibration fatigue. Keeping bolts tight solved this problem. In another case, grinding machines were unable to produce surfaces of uniform quality and smoothness on steel bearing products. Measurements showed that self-excited vibrations were created when particular steels were ground. It was found that the natural frequency of the wheel truing device was the culprit. A tuned damped absorber was designed and built to modify the resonance. This eliminated the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001502
EISBN: 978-1-62708-234-1
... Abstract A portion of two large spur tooth bull gears made from 4147H Cr-Mo alloy steel that had spalling teeth was submitted for evaluation. The gears were taken from a final drive wheel reduction unit of a very large open-pit mining truck. The parts had met the material and initial heat treat...
Abstract
A portion of two large spur tooth bull gears made from 4147H Cr-Mo alloy steel that had spalling teeth was submitted for evaluation. The gears were taken from a final drive wheel reduction unit of a very large open-pit mining truck. The parts had met the material and initial heat treat hardening specifications. The mode of failure was tooth profile spalling. By definition, spalling originates at a case/core interface or at the juncture of a hardened/nonhardened area. The cause of this failure was either insufficient or no induction-hardened case along the active profile. The cause was activated by a nonfunctioning induction hardening coil that did not or was not allowed to harden the midprofile of several teeth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048757
EISBN: 978-1-62708-234-1
... by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide...
Abstract
Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide and increased grain size. Hydrogen and oxygen absorption was revealed by the presence of hydrides and the shallow surface embrittlement and thus susceptibility to cracking at ambient temperatures was observed. It was concluded that the titanium tubes were embrittled due to overheating the tubes and the severe surface embrittlement resulted from oxygen absorption which made the surface layers susceptible to cracking under start up and shutdown. Replacement tubes made of a heat-resistant alloy (e.g., Hastelloy C-276) were recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089429
EISBN: 978-1-62708-223-5
.... It was concluded by the plaintiff's metallurgist that the failed drill was defective as the steel contained nonmetallic inclusions and carbide segregation which made it brittle. It was revealed by the defendant that the twist drill met all specifications of M1 high-speed steel and investigated several other drills...
Abstract
The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had shattered suddenly with a bang which caused a chip to be dislodged and cause the injury. A large nonmetallic inclusion parallel to the axis near the center of the drill was revealed in an unetched longitudinal section. Carbide bands in a martensitic matrix were indicated in an etched sample. It was concluded by the plaintiff's metallurgist that the failed drill was defective as the steel contained nonmetallic inclusions and carbide segregation which made it brittle. It was revealed by the defendant that the twist drill met all specifications of M1 high-speed steel and investigated several other drills without failure to prove that the failure was caused by use in excessive conditions. It was revealed by examination that the point of the broken drill was not the original point put on at manufacture but came from regrinding. Both technical and legal details have been discussed.
1