1-20 of 60 Search Results for

mercury

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001679
EISBN: 978-1-62708-229-7
... Abstract Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... Abstract The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected...
Image
Published: 01 January 2002
Fig. 1 Mercury-induced cracking of aluminum alloy piping. (a) Weld cap with through-wall branched cracking. (b) Cross section at the through-wall crack location. (c) Branched, intergranular cracking at a crack tip. 27×. Source: Ref 7 More
Image
Published: 01 January 2002
Fig. 2 Mercury-induced embrittlement of bronze rupture discs. (a) Premature, atypical rupture of a rupture disc. (b) SEM fractograph of a failed rupture disc, showing intergranular crack propagation. 554×. Source: Ref 11 More
Image
Published: 01 June 2019
Fig. 7 SEM Micrograph Representative of Particles on Mercury Diffusion Pump Stage More
Image
Published: 01 June 2019
Fig. 8 EDS of Particles on Mercury Diffusion Pump Stage More
Image
Published: 01 December 1992
Fig. 1 Damaged left headlamp of the Mercury Cougar. More
Image
Published: 01 December 1993
Fig. 4 Weld W-19 after it was excavated to detect the presence of mercury More
Image
Published: 01 December 1993
Fig. 17 Mercury X-ray image of the deposit on the inside surface of the pipe More
Image
Published: 15 January 2021
Fig. 2 Mercury-induced cracking of aluminum alloy piping. (a) Weld cap with through-wall branched cracking. (b) Cross section at the through-wall crack location. (c) Branched, intergranular cracking at a crack tip. Original magnification: 27×. Source: Ref 8 More
Image
Published: 15 January 2021
Fig. 3 Mercury-induced embrittlement of bronze rupture discs. (a) Premature, atypical rupture of a rupture disc. (b) Scanning electron microscope (SEM) fractograph of a failed rupture disc, showing intergranular crack propagation. (c) SEM micrograph showing an area similar to (b) at higher More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001012
EISBN: 978-1-62708-234-1
..., with the cracks starting on the inside surfaces of the tubes. There was no known corrosive agent in the system, and no other corrosion damage could be found. Qualitative tests and spectrographic analysis gave a positive indication for mercury. The spacing of the cracks, the branched intergranular cracking...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001318
EISBN: 978-1-62708-215-0
... Abstract Failure of three C22000 commercial bronze rupture discs was caused by mercury embrittlement. The discs were part of flammable gas cylinder safety devices designed to fail in a ductile mode when cylinders experience higher than design pressures. The subject discs failed prematurely...
Image
Published: 01 December 2019
Fig. 32 SEM of fracture surface of notched, fatigue-pre-cracked nickel single crystal cracked first in liquid mercury and then (after completely evaporating the mercury) in hydrogen gas (101 kPa) at 20 °C showing essentially identical appearance (tear ridges, slip lines, and isolated dimples More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001036
EISBN: 978-1-62708-214-3
... Abstract A 1984 Chevrolet Blazer was being pushed by three youths after it ran out of gas when it was hit from behind by a 1979 Mercury Cougar. One of the youths was crushed between the two vehicles and killed. Optical microscopy was used to examine the tungsten filaments from the headlamps...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... of LME as a failure analysis tool is also discussed. fasteners nozzles valves fracture mercury lead cadmium zinc structural alloys cracking cleavage radiography fracture toughness 5083-O (wrought aluminum magnesium alloy) UNS A95083 10Zn-2Pb (free-machining brass) Introduction...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... of LMIE, the fracture is, of course, covered by a visible layer of the embrittler metal. At room temperature, mercury or its alloys are liquid, and other metals are present as a resolidified coating. Mercury-induced failures of aluminum alloys are characterized by the generation of significant quantities...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... is, of course, covered by a visible layer of the embrittler metal. For example, at room temperature, mercury or its alloys are liquid, and other metals are present as a resolidified coating. Mercury-induced failures of aluminum alloys are characterized by the generation of significant quantities of white...
Image
Published: 15 January 2021
Fig. 57 Liquid metal embrittlement in two aluminum alloy 2024-T4 plates that were wetted with liquid mercury and then loaded to fracture in tension. Fracture occurred rapidly at a stress well below the nominal yield strength of the plates. Visible on each fracture surface is a flat, mercury More
Image
Published: 01 December 1993
Fig. 5 Macrograph of fracture surface at weld W-3 before removal of the white oxide deposit. Note the mercury droplets. 10.26× More