1-18 of 18 Search Results for

melt degassing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001522
EISBN: 978-1-62708-235-8
..., which indicated turbulent filling of the mold. Spherical pores would have indicated the melt had been improperly degassed. Based on these findings, it was recommended that the manufacturer analyze and redesign the gating system to eliminate the turbulent flow problem during the permanent mold casting...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... to the higher amount of silicon. The cracked zone was fully opened to investigate the fracture surface. Figure 6 shows the crack origins and the direction of propagation. Visual inspection revealed pores around the hole because of poor quality of the casting process which needs an optimization in melting...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001839
EISBN: 978-1-62708-241-9
... Fractography Sources of Hydrogen Pickup in Steel Making Conclusions Recommendations Numerous sources of hydrogen exist during melting, ladle processing and casting operations. Hydrogen pickup in the steel is primarily due to the water associated with the fluxes and as an impurity in alloy...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
...? Is the screw speed normal? Is the barrel pressure high? Is the motor load high? Is there a solids-conveying problem? Is there a melting problem? Melt fracture Slip-stick phenomenon at the die lip wall Streamline the flow channel Reduce shear stress at the die lands: ○ Increase die...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
... supplied for construction of the bridge was melted by an electric furnace process using charge materials composed of purchased bundles of steel scrap, broken iron molds, and recycled steel scrap from the steel producer's shop. A one-slag practice was used, with liquid steel vacuum degassed by the DH method...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... and fracture toughness at -40 °C (-40 °F) and at room temperature. Fatigue-strength data were also obtained from manufacturers. Except the vanadium-modified 4337 gun steel (4337V) and the British I steel, which were air melted and vacuum degassed, all alloys came as vacuum-melted bar stock (induction...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... Scientific Molding Process Process based on machine inputs Process based on derived data from testing and monitoring Temperatures Reliance on barrel temperature settings Reliance on actual melt temperature Velocity (Injection speed) Slow to fast Fast — as fast as possible Pressures...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
...-die and upset forgings are produced from billets, bar stock, or a preform, all of which have received some previous mechanical working. The major problems associated with melting and casting practice are the development of centerline segregation and porosity and a condition known as scabs...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance. aluminum casting defects castings copper ductile iron failure analysis gray iron melting solidification steel Introduction...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... performance of a part by creating a notch of unknown severity and serve as a crack-initiation site during fabrication or in service. Corrosion and wear damage can also be assisted by discontinuities, especially at the surface. These flaws may occur from the melting practices and solidification of ingot...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
...) . Fig. 30(b) Cold-etched (10% aqueous nitric acid) disk cut from the moil point shown in Fig. 30(a) . A nonuniform chill is evident; the dark areas are hardened. 2× Failures Due to Burning and Melting Temperature-control problems can cause difficulties other than overaustenitization...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... areas are hardened. Original magnification: 2× Failures due to Burning and Melting Temperature-control problems can cause difficulties other than overaustenitization; burning or incipient melting can also occur in extreme cases. Figure 31(a) shows an end view of a powder metallurgy die...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... interfere with the ability of the foundry to use the best techniques to produce reliable castings. Defect-free castings can be produced at a price. The multitude of process variables, such as molding mediums, binder, gating and risering, melting and ladle practice, pouring technique, and heat treatment...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
..., or by terminating welding on runoff tabs that are cut away later. If crater cracks are found, they should be chipped out and the area rewelded, because it is very difficult to melt out a crater crack. Hat cracks (No. 9, Fig. 3 ) derive their name from the shape of the weld cross section with which...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... not involve melting. As shown in Fig. 2 , there are many different processes available for welding metals ( Ref 3 ), and the selection depends on the type of material, geometry, application, cost, and properties targeted at the joint, among others. When metals are welded together, acceptance criteria...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4