1-20 of 52 Search Results for

melt bridging

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
.... pipe hot cracking grain boundary segregation stainless steel tear ridges melt bridging microfractography induction heating frequency X6CrNiMoTi17-12-2 (titanium-stabilized austenitic stainless steel) UNS S31635 Introduction Large austenitic stainless steel piping used for manifolds...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
... for construction of the bridge was melted by an electric furnace process using charge materials composed of purchased bundles of steel scrap, broken iron molds, and recycled steel scrap from the steel producer's shop. A one-slag practice was used, with liquid steel vacuum degassed by the DH method, which entails...
Image
Published: 01 December 2019
Fig. 9 Scanning electron microfractograph of crack forced open in laboratory (see Fig. 7 ). Evidence of liquation cracking. Formerly molten low-melting grain boundary phases bridging between grains More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
.... It was not too long ago that the idea of using a plastic material for a structural component in a bridge was unthinkable. However, the chemical resistance, weight reduction, and increase in lifetime that modern plastics can provide were too compelling to ignore. Plastic bridges that have projected lifetimes well...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... be insulated and contain cooling lines to provide thermal separation between the hot barrel and the hopper. This prevents material from melting prematurely and forming a solid plug (referred to as a bridge) that blocks material from feeding to the extruder. Located inside the cylindrical barrel channel...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... of the situation. Furthermore, those cases where such embrittlement extends below the melting temperature of the embrittling metal, formerly known as stress alloying, are now termed solid metal induced embrittlement (SMIE). In either case, the metal-induced embrittlement is the result of subcritical crack growth...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... as liquid metal embrittlement. More recently, the term liquid-metal-induced embrittlement (LMIE) has been accepted as more descriptive of the situation. Furthermore, those cases where such embrittlement occurs below the melting temperature of the embrittling metal, formerly known as stress alloying...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
...-die and upset forgings are produced from billets, bar stock, or a preform, all of which have received some previous mechanical working. The major problems associated with melting and casting practice are the development of centerline segregation and porosity and a condition known as scabs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... temperature gradient on the back side of the weld from a chill block, fixture or purge gas. A steep temperature gradient would reduce the width of the partially melted region (liquid at grain boundaries) in the HAZ and the likelihood of cracks occurring [ 3 ]. Fig. 5 Intergranular HAZ Liquation...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
... equipment, pipelines, bridge components, and boilers. Some of the content in this article also overlaps with those articles dealing with failure analysis in general and other related topics. Two broad categories of weld failures exist: the failure of the weld to initially join the material as intended...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001205
EISBN: 978-1-62708-219-8
... longitudinal sections were made through the planes designated as 6, 7, 8 and 9 in Fig. 4 . They confirmed that welding caused complete melting of certain spots of the shaft tubing causing blistered or shrinkage cavities in the solidified area ( Fig. 5 ). The blue spot in the fracture may possibly be due...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... performance of a part by creating a notch of unknown severity and serve as a crack-initiation site during fabrication or in service. Corrosion and wear damage can also be assisted by discontinuities, especially at the surface. These flaws may occur from the melting practices and solidification of ingot...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... and Prevention , Volume 11 of the ASM Handbook , 2002. Nevertheless, failures continue. Recalls of motor vehicles and consumer products are reported on a regular basis and tabulated on various websites. Building and bridge collapses are less common but still occur. Thus, the need for failure analysis...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0048039
EISBN: 978-1-62708-219-8
... High Strength Special Traction Elevator Cable with fiber core. The cables had been in service for 1 1 2 years. The end of the wire rope was sealed into a conical shape ( Fig. 1a ) in a low-melting alloy. Fracture occurred at the shackle where the end of the cable was socketed. Fig. 1...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
.... For an automobile it would be velocity, road roughness, yaw angle, velocity and acceleration, and so forth. For bridges, it would be type, span, loading, wind velocity, and so forth. The next area is the determination of these external loads into internal loads. The internal loads are loads that manifest...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... interfere with the ability of the foundry to use the best techniques to produce reliable castings. Defect-free castings can be produced at a price. The multitude of process variables, such as molding mediums, binder, gating and risering, melting and ladle practice, pouring technique, and heat treatment...