1-16 of 16 Search Results for

medical instruments

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... cracking, depending on the use conditions. Understanding these tradeoffs allows designers to create tools for a wide variety of applications while minimizing the possibility of failure. Surgical tool failure case studies are now presented with an emphasis on these tradeoffs. medical instruments...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... and Drug Administration (FDA) defines a medical device as an instrument, apparatus, implement, machine, or implant intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease that does not achieve its primary intended purposes through chemical action and is not dependent upon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... on the secondary electron detector can also be varied on some instruments to obtain a highly directional BSE image (sometimes referred to as a reflected electron image). Figure 8 shows a fracture surface for a titanium alloy implantable medical device where the fracture radial ridges that mark a fracture origin...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... Abstract The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... of this effect in the polyvinyl chloride (PVC) industry. The PVC can be altered from the rigid material from which plastic pressure pipes are made to the extremely soft, flexible material from which medical tubing is made through the judicious use of plasticizers ( Ref 6 ). However, the plasticization effect...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... of production and tooling applications. Metal AM processes also proliferated in the early 2000s, especially in the aerospace and medical industries, where tailored, low-volume, high-performance parts are required. This article gives an overview on metal AM processes and describes sources of failures...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
... to be responding to accidents should be made aware of the necessity of documentation and preservation of the accident scene. There are numerous reasons, both intentional and unintentional, why the condition of the accident scene may change after an accident: Medical Attention to Injured Persons...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006772
EISBN: 978-1-62708-295-2
... an accident: Medical attention to injured persons: Persons who may be injured during the accident usually become the top priority of personnel responding to the accident. However, during this process, relocation and/or alteration of evidence can occur that may make explanation of the events...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003518
EISBN: 978-1-62708-180-1
... of factors or damage mechanism (see the article “Determination and Classification of Damage” in this Volume). Root cause analysis There are many approaches. Most of this work has been done in the nuclear and chemical industries, in response to disastrous failures. It is also being used by medical...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
.... A typical DSC result is presented in Fig. 5 . Differential scanning calorimetry uses the temperature difference between a sample material and a reference as the raw data. In the application, the instrumentation converts the temperature difference into a measurement of the energy per unit mass associated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
..., and material conditions. Computed tomography is used in the medical community for noninvasive x-ray imaging of the human anatomy. The same technique has been applied for 3D nondestructive inspection of components. The method has gained in popularity in the biomedical industry and to inspect polymeric materials...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006754
EISBN: 978-1-62708-295-2
... “Determination and Classification of Damage” in this Volume) Root-cause analysis There are many approaches. Most of this work has been done in the nuclear and chemical industries, in response to disastrous failures. It is also being used by medical administrators and many other fields. Commercial software...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
.... Fig. 9 Fracture in a thin medical device manufactured from type D2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning electron micrograph. Original magnification: 1187×. (b) Cross section through a cracked region in a similar part showing brittle fracture...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
.... The tempered martensitic matrix was somewhat ductile, yet fracture occurred when brittle, massive carbides near the surface shattered. Fig. 9 Fracture in a thin medical device manufactured from type D 2 tool steel. (a) View showing a fractured massive carbide and associated matrix crack. Scanning...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... in the previous photograph. This is not easy to do using the TEM for examination due to the size limitation of the replica (approximately 3.2 to 6.4 mm, or 1 8 to 1 4 in., in diameter.) Since the 1970s, the SEM has become the most common instrument of use for high-magnification...