1-20 of 174 Search Results for

mechanically accelerated corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001082
EISBN: 978-1-62708-214-3
... were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001674
EISBN: 978-1-62708-234-1
... of the corrosion product, however, enabled specific and highly sensitive techniques for identifying the corrosive agent to be utilized. The evaluation of all the data allows us to be reasonably certain of the following reaction mechanism for the observed corrosion process. The PETN decomposes (at accelerated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
..., and Protection , Volume 13A of the ASM Handbook , 2003. Galvanic Corrosion Although sometimes considered a form of corrosion, galvanic corrosion is more accurately considered a type of corrosion mechanism, because galvanic action is the basis for, or can accelerate the effects of, other forms...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations. boiler tubes stress rupture...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... movement between a corrosive fluid and the metal surface. Erosion may accelerate corrosion of high-temperature components discussed previously. Generally, mechanical wear, abrasion, or abrupt changes in flow direction are involved. Metal or alloy loss results when the protective, passive surface films...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001022
EISBN: 978-1-62708-214-3
... and adjoining wall between the steel sleeve and the steel diaphragm washer. Metallographic analysis and accelerated corrosion tests showed that the cracks had originated as stress-corrosion failures. Forgings, corrosion Landing gear, corrosion 2014 UNS A92014 Intergranular corrosion Stress-corrosion...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
... 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... such as the rust scale, which could have much lower mechanical strength and lower resistance to wear. Thus, wear can be considerably accelerated. Corrosion-induced surface imperfections and roughening can be precursors to microcracking. The degradation of materials under corrosion attack is often accompanied...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... considered a form of corrosion, galvanic corrosion is more accurately considered a type of corrosion mechanism, because galvanic action is the basis for, or can accelerate the effects of, other forms of corrosion. Uniform attack, pitting, and crevice corrosion can all be exacerbated by galvanic conditions...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
... to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
..., can lead to accelerated attack. Two distinct hot corrosion mechanisms have been recognized: Type 1 hot corrosion occurs between 800 and 925 °C (1470 and 1700 °F), while Type 2 hot corrosion occurs between 600 and 750 °C (1110 and 1380 °F). In both cases, the protective oxide layer is melted...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... in the system Characterization of corrosion products and their potential sources Identification of the failure mode and/or mechanism Ultimate determination of the root cause of the failure when possible At the onset of a failure investigation of metallic and nonmetallic components...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001030
EISBN: 978-1-62708-214-3
... hardness caused by “burning” in the fastener holes added to the susceptibility of the D6ac steel frame to SCC. Second, the galvanic potential between the dissimilar metals used (i.e., the D6ac steel frame and the Ti-6Al-4V interference-fit fasteners) accelerated the mechanism of corrosion, which...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
... accelerated pitting of austenitic stainless steel: the bottom surface, weld or HAZ pits, and crevices. Recommendations included proper material selection for piping, flanges, and weld rods with greater corrosion resistance. Proper filtering to prevent entrained abrasives and timely breakdown inspections were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... conditions, elevated temperatures, or highly aggressive solutions. While accelerated testing does provide test data sooner, extrapolation of results may be misleading. The acceleration of certain factors during the testing may cause different corrosion mechanisms to become active, and thus the results...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... accelerate corrosion by changing the nature or kinetics of the rate-controlling reaction or process. They can be directly involved in the electron transfer processes in the electrochemical cell represented by Eq 1 or be less directly involved through a number of mechanisms, including depolarization...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... fatigue cracking facilitated by the occurrence of hot corrosion. The working environment was found to be severely corrosive. This has shown that hot corrosion can be the precursor of other failure mechanisms and can accelerate crack initiation. In this case, the second factor that influenced cracking...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... different corrosion mechanisms to activate, producing results that may not reflect those that would be obtained during testing under actual service conditions. Care must be taken when evaluating accelerated testing results so that economical and acceptable choices are not eliminated due to their performance...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
... accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001486
EISBN: 978-1-62708-234-1
... bouncing of the piston. The exact mechanism of cavitation damage is not entirely clear. Two schools of thought have developed, one supporting an essentially erosive, and the other an essentially corrosive, mechanism. Measures to prevent, or reduce, cavitation damage should be considered firstly from...