Skip Nav Destination
Close Modal
Search Results for
mechanical components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 845 Search Results for
mechanical components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.9781627082259
EISBN: 978-1-62708-225-9
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... Abstract Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Abstract This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
.... This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... analysis microelectronics piping pressure vessel FAILURE of a structural or mechanical component usually can be associated with materials-related problems and/or design-related problems (which may include, depending on the definition of design, unexpected service environment). Materials failure...
Abstract
This article provides information on the development of finite element analysis (FEA) and describes the general-purpose applications of FEA software programs in structural and thermal, static and transient, and linear and nonlinear analyses. It discusses special-purpose finite element applications in piping and pressure vessel analysis, impact analysis, and microelectronics. The article describes the steps involved in the design process using the FEA. It concludes with two case histories that involve the use of FEA in failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001828
EISBN: 978-1-62708-241-9
... ” loops, as shown in Fig. 2 . The quality and reliability of the CANDU HT pumps has been proven to meet the highest standards [ 6 ]. Stress corrosion failures of mechanical components have been observed in nuclear reactors on several stainless steel (SS) components [ 1 ]. Initiating mechanisms...
Abstract
A heat transport pump in a heavy water reactor failed (exhibiting excessive vibration) during a restart following a brief interruption in coolant flow due to a faulty valve. The pump had developed a large crack across the entire length of a bearing journal. An investigation to establish the root cause of the failure included chemical and metallurgical analysis, scanning electron fractography, mechanical property testing, finite element analysis of the shrink fitted journal, and a design review of the assembly fits. The journal failure was attributed to corrosion fatigue. Corrective actions to make the journals less susceptible to future failures were implemented and the process by which they were developed is described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
... analysis. finite-element modeling impact analysis microelectromechanical systems microelectronic systems pressure vessels structural analysis Introduction Failure of a structural or mechanical component usually can be associated with materials-related problems and/or design-related...
Abstract
When complex designs, transient loadings, and nonlinear material behavior must be evaluated, computer-based techniques are used. This is where the finite-element analysis (FEA) is most applicable and provides considerable assistance in design analysis as well as failure analysis. This article provides a general view on the applicability of finite-element modeling in conducting analyses of failed components. It highlights the uses of finite-element modeling in the area of failure analysis and design, with emphasis on structural analysis. The discussion covers the general development and both general- and special-purpose applications of FEA. The special-purpose applications of FEA covered are piping and pressure vessel analysis, impact analysis, and microelectronic and microelectromechanical systems analysis. The article provides case histories that involved the use of FEA in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
... data generated, and methods utilized, during acceptance are still applicable to aid with the failure analysis. If the assembly is a mechanical component, the case may be that only the amount of wear or electrical connection may be of importance and other parts such as the casing or mounting points may...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0090276
EISBN: 978-1-62708-230-3
... (Other, general, or unspecified) corrosion A Yankee dryer is a critical mechanical component in the manufacture of tissue paper. It is a large, cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessel that has evolved in design since the early 1900s. A wet sheet of paper...
Abstract
Cracking was found in the heads on large Yankee dryers, large, cylindrical, rotating, pressurized, high-temperature, cast iron pressure vessels (ASME Boiler and Pressure Vessel Code Section VIII, Rules for Construction of Pressure Vessels), used to remove moisture from sheets of tissue paper during manufacturing. The typical components consist of a cast iron shell, two cast iron concave heads, and a large cast iron internal center stay attached to journals. The heads are attached to the shell and center stay with high-strength bolts. FEA and metallurgical investigation supported the conclusion that the cracking was caused by an unexpected type of load placed on the machine, namely corrosion product buildup at the head/shell interface causing the joint to displace open. It was also found that compressive bolting loads could slightly open the head/shell interface at the periphery. Recommendations included design changes in the head/shell joint, and detailed preventive maintenance inspection procedures were also suggested.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001625
EISBN: 978-1-62708-218-1
... of processing fluids and/or cleaning agents, were left on the surface just prior to painting and resulted in the observed fisheye blemishes. One of the components also showed evidence of mechanical damage, in addition to detectable iron, which suggests that the part surface may have been damaged from contact...
Abstract
Two acrylic-coated polymeric motorcycle components exhibited fisheye blemishes after painting. SEM and EDS results showed relatively high levels of sulfur and chlorine associated with the blemishes in both parts. This suggested some adherent residual substances, possibly in the form of processing fluids and/or cleaning agents, were left on the surface just prior to painting and resulted in the observed fisheye blemishes. One of the components also showed evidence of mechanical damage, in addition to detectable iron, which suggests that the part surface may have been damaged from contact with a ferrous material, such as a steel chip.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... must be tested for validity. It is more likely that existing known phenomena account for the observations, and the analyst needs to research what those phenomena are. Characterization and Identification of Damage and Damage Mechanisms Regarding component damage evaluation, a failure is defined...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
..., and shrinkage defects in the castings. Most of the components failed to meet required mechanical properties because of these casting defects. Bombs (weapons) Tailcones Die castings Heat checking Inclusions Shrinkage Porosity A356 UNS A13560 Casting related failures Introduction Component...
Abstract
Cluster bomb tailcone assemblies each containing two aluminum die-cast components were rejected because of the poor surface condition of the die castings. Numerous heat checks were found on the surfaces of the tailcones and radiographic inspection revealed inclusions, gas holes, and shrinkage defects in the castings. Most of the components failed to meet required mechanical properties because of these casting defects.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... damage mode and failure mode can be used interchangeably, as can damage mechanism and failure mechanism. ) Damage mechanisms are a key component in categorizing damage and failures. The definitions are: Much confusion has occurred because of the tendency of engineers to use the terms mechanism...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047105
EISBN: 978-1-62708-225-9
... in ductility and toughness as revealed by mechanical testing. Unfortunately, the potential effects of anisotropy were apparently neglected when this component was designed and manufactured from the plate stock, because the loading was applied in a direction that stressed the weakest planes in the material...
Abstract
The locking collar on a machine failed suddenly when the shaft it restrained was inadvertently subjected to an axial load slightly higher than the allowable working load. The locking collar fractured abruptly, producing four large fragments. This allowed the shaft to be propelled forcefully in the direction of the load, causing substantial damage to other machinery components in the vicinity. The failed component, which was 43 cm (17 in.) in diameter, was machined from 4140 plate and heat treated to 34 to 36 HRC. Analysis (visual inspection, composite micrographs, scanning electron microscopy, and mechanical-property analysis) supported the conclusions that the alloy steel plate used in this application contained significant brittle microstructural fibering or banding. This condition produced considerable anisotropy in ductility and toughness as revealed by mechanical testing. Unfortunately, the potential effects of anisotropy were apparently neglected when this component was designed and manufactured from the plate stock, because the loading was applied in a direction that stressed the weakest planes in the material, that is, a direction normal to the fibering. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090457
EISBN: 978-1-62708-222-8
... Abstract Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure...
Abstract
Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure a metal slide on an older design, whereas newer components showed no signs of failure. The latch assembly components were injection molded from an unfilled commercial grade of a polyacetal copolymer. Investigation of failed parts (including visual inspection, a specially designed proof load test, 59x SEM images, micro-FTIR in the ATR mode, and DSC/TGA/MFR analysis) showed no evidence of contamination or degradation from the molding process. The conclusion was that the parts failed via brittle fracture associated with stress overload. The stress overload was accompanied by severe apparent embrittlement resulting from a relatively high strain rate event and/or significant stress concentration. A relatively sharp corner formed by a retaining tab on the older design was shown to be a primary cause of the failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... the component operates generally in combinations of mechanical and chemical environments. Defining performance may involve defining end points such as: acceptable length of propagating cracks, maximum depth of propagating pits, acceptable remaining thickness of corroding pipes, maximum number of fatigue cycles...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
1