1-20 of 601 Search Results for

mechanical alloying

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 16 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.50 wt% C) as determined by Patton. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 17 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.45 wt% C) as determined by Janitsky and Baeyertz. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 13 Aluminum alloy fracture mechanics test specimen, 6.3 mm (0.25 in.) thick. Fatigue crack at left of arrows is flat and perpendicular to side surfaces (note absence of beach marks in this laboratory fatigue fracture). Overload fracture to right of arrows has 45° shear lips extending More
Image
Published: 15 January 2021
Fig. 13 Aluminum alloy fracture mechanics test specimen, 6.3 mm (0.25 in.) thick. Fatigue crack at left of arrows is flat and perpendicular to side surfaces (note absence of beach marks in this laboratory fatigue fracture). Overload fracture to right of arrows has 45° shear lips extending More
Image
Published: 30 August 2021
Fig. 3 Bingham-Maxwell expression for the mechanical properties of a solder alloy More
Image
Published: 30 August 2021
Fig. 2 Deformation mechanism maps for MAR-M 200 alloy at a grain size of (a) 100 μm and (b) 1 cm (0.4 in.) More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application. pump casing cavitation wear erosion steel shrinkage pits and voids scanning electron microscopy cavitation resistance C30 (low-carbon steel alloy) UNS G10300...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... segregating at grain boundaries during working at elevated temperatures (hot shortness), as can occur in copper alloys incorporating bismuth The following sections describe in more detail some typical mechanisms that cause IG fracture. Mechanisms of IG fracture in alloy steels are also described in Ref...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... that cause IG fracture of steels. Mechanisms of IG fracture in alloy steels are also described in Ref 17 . Intergranular Fracture of Steels due to Grain-Boundary Precipitates This type of IG fracture is caused by the presence of well-defined second-phase precipitates at the grain boundaries. It may...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
..., troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
... Abstract A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
... a component occasionally cracks during the quenching process, and when tensile specimens fail prematurely during mechanical testing. These two failures prompted an investigative analysis and a series of studies to determine the causes of the cracking and erratic behavior observed in this alloy. Quench-related...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
... mechanical properties for this alloy. In some cases, the tensile failures initiated at the large inclusions observed in the radiographs. Fig. 1 Macrograph showing the heat checks noted on the tailcone sections (1.8× magnification) As a result of these findings, an inspection was performed...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... though banded) distribution of bulky and brittle primary titanium carbonitrides. Grain boundary embrittlement caused by secondary carbide precipitates. This alloy is both ductile and tough and not at all susceptible to this kind of material property degradation. Also, excessive secondary carbide grain...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... and associated failures of alloys used in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also...
Image
Published: 01 June 2019
alloy and cup, from location between arrows in (b). 350×. Braze metal (region C) appears to be mechanically bonded to oxide layer (region D) on surface of cup (region E). More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046146
EISBN: 978-1-62708-217-4
... hole since no material defects were found at the failure origin. Recommendations included redesign of the lubrication hole, shot peeing of the faces of the lug for added resistance to fatigue failure, and changing of the forging material to aluminum alloy 7175-T736 for its higher mechanical properties...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... been documented in nearly all engineering metals and alloys and is caused by a wide variety of mechanical and environmental factors such as grain-boundary embrittlement and decohesive separation along the grain boundaries at elevated (creep-regime) temperatures. For service temperatures below the creep...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
.... The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural...