Skip Nav Destination
Close Modal
Search Results for
material
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1865 Search Results for
material
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.9781627082242
EISBN: 978-1-62708-224-2
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
..., for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... Abstract Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001283
EISBN: 978-1-62708-215-0
... Abstract During the preproduction stages of forging, an initial batch of 50 mm (2 in.) diam Al-4Cu alloy (L77) extruded bar stock material was found to be cracking randomly. Failure analysis was conducted to determine the metallurgical factors underlying the phenomenon. Microexamination...
Abstract
During the preproduction stages of forging, an initial batch of 50 mm (2 in.) diam Al-4Cu alloy (L77) extruded bar stock material was found to be cracking randomly. Failure analysis was conducted to determine the metallurgical factors underlying the phenomenon. Microexamination of sections across the defects revealed intergranular cracks tracing a path of round, segregated particles and oxide film discontinuities. The segregated particles were rich in copper It was concluded that the cracking was the result of segregations occurring in poor-quality raw material. The source of segregation was suspected to be the use of improperly made master alloys. Use of improved melting techniques and proper master alloys was recommended.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... Abstract There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047109
EISBN: 978-1-62708-233-4
.... That they failed in the threaded portion also suggests a stress-concentration effect. Recommendations included changing the material spec to a higher-strength material with greater impact strength. In this case, it was recommended that the stems, despite any possible design changes, be manufactured from an alloy...
Abstract
A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle. The function of the valve is to open and close a port; thus, the valve is subjected to both impact and tensile loading. Analysis (visual inspection, hardness testing, and stress analysis) supported the conclusions that the valve stems were impact loaded to stresses in excess of their yield strength. That they failed in the threaded portion also suggests a stress-concentration effect. Recommendations included changing the material spec to a higher-strength material with greater impact strength. In this case, it was recommended that the stems, despite any possible design changes, be manufactured from an alloy such as PH 13-8Mo, which can be processed to a yield strength of 1379 MPa (200 ksi), with impact energies of the order of 81 J (60 ft·lbf) at room temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047850
EISBN: 978-1-62708-233-4
...) than specified. It was disclosed by metallographic examination that the microstructure was predominantly equiaxed ferrite and pearlite which indicated that the material was in either the hot-worked or normalized condition. An improvement of fatigue strength of the shaft by the development of a quenched...
Abstract
The fan drive support shaft, specified to be made of cold-drawn 1040 to 1045 steel, fractured after 2240 miles of service. It was revealed by visual examination of the shaft that the fracture had initiated near the fillet at an abrupt change in shaft diameter. The cracks originated at two locations approximately 180 deg apart on the outer surface of the shaft and propagated toward the center. Features typical of reversed-bending fatigue were exhibited by the fracture. A tensile specimen was machined from the center of the shaft and it indicated much lower yield strength (369 MPa) than specified. It was disclosed by metallographic examination that the microstructure was predominantly equiaxed ferrite and pearlite which indicated that the material was in either the hot-worked or normalized condition. An improvement of fatigue strength of the shaft by the development of a quenched-and-tempered microstructure was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
... originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings. Aircraft components Forgings...
Abstract
A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor the roll mileage was reported, but about 300 days had elapsed between the date of manufacture and the date the wheel was removed from service. The analysis (visual inspection, macrographs, micrographs, electron microprobe) supported the conclusions that the wheel half failed by fatigue. The fatigue crack originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001636
EISBN: 978-1-62708-217-4
... Abstract A Lynx helicopter from the Royal Netherlands Navy lost a rotor blade during preparation for take-off. The blade loss was due to failure of a rotor hub arm by fatigue. The arm was integral to the titanium alloy rotor hub. An extensive material based failure analysis covered the hub...
Abstract
A Lynx helicopter from the Royal Netherlands Navy lost a rotor blade during preparation for take-off. The blade loss was due to failure of a rotor hub arm by fatigue. The arm was integral to the titanium alloy rotor hub. An extensive material based failure analysis covered the hub manufacture, service damage, and estimates of service stresses. There was no evidence for failure due to poor material properties. However, fractographic and fracture mechanics analyses of the service failure, a full scale test failure, and specimen test failures indicated that the service fatigue stress history could have been more severe than anticipated. This possibility was subsequently supported by a separate investigation of the assumed and actual fatigue loads and stresses.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
... Abstract The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results...
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
... of the tooth. It was concluded that the seam had been present before the shaft was heat treated and these seams acted as stress raisers during induction hardening to cause the shaft failure. It was recommended that the specifications should specify that the shaft material should be free of seams and other...
Abstract
Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual and stereo-microscopic examination. One tooth on each shaft was found to be broken off. It was revealed by metallographic examination of an unetched section through the fractured tooth that the fracture surface was concave and had an appearance characteristic of a seam. Partial decarburization of the surface was revealed after etching with 1% nital. The presence of a crack, with typical oxides found in seams at its root, was disclosed by an unetched section through the shaft in an area unaffected by induction heating. The etched samples revealed similar decarburization as was noted on the fracture surface of the tooth. It was concluded that the seam had been present before the shaft was heat treated and these seams acted as stress raisers during induction hardening to cause the shaft failure. It was recommended that the specifications should specify that the shaft material should be free of seams and other surface imperfections.
Image
Published: 01 January 2002
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 33 Stress-rupture curves for virgin material and predamaged material showing the various life fractions. Virgin material rupture life at 575 °C (1065 °F) is 62,210 h Estimated remaining life at 575 °C (1065 °F) for predamaged samples based on: Symbol Damage fraction Life
More
Image
Published: 01 January 2002
Fig. 8 Processes by which a material is damaged by liquid impingement erosion. (a) Solid surface showing initial impact of a drop of liquid that produces circumferential cracks in the area of impact or produces shallow craters in very ductile materials. (b) High-velocity radial flow of liquid
More
Image
Published: 01 January 2002
Fig. 4 Striated fracture surface in type 304 stainless steel early in material-removal stage of cavitation erosion
More
Image
Published: 01 January 2002
Fig. 3 Bearings that failed because of wear by abrasive material in the bearing. (a) Needle-roller bearing. Note that flats have been worn on the rollers. (b) Abrasive wear caused by natural diamond dust (≤5 μm) that was deliberately introduced into the lubricant in the laboratory. Deep
More
Image
Published: 01 January 2002
Fig. 21 Fatigue curves of type 316LR stainless steel implant material tested in bending mode. (a) S-N curves for stainless steel in cold-worked and soft condition that was tested in air and aerated lactated Ringer's solution. (b) Fatigue curve for number of cycles to failure as shown in Fig
More
Image
Published: 01 January 2002
Fig. 32 Wear on head of titanium screw. (a) Material transport and fretting zone. (b) Close-up view of wear structures showing fine wear products. 120×. (c) Wear structures showing generation of small wear particles. 1200×. (d) Wear structures with additional fretting structures. 305×
More
Image
Published: 01 January 2002
Fig. 14 Micrograph showing foreign material and secondary surface crack at region 3 in Fig. 11 . Etched with nital. 100×. See also Fig. 12 and 13 .
More
1