Skip Nav Destination
Close Modal
Search Results for
mass characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
mass characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... parties. Sample characteristics to be evaluated include mass, visual appearance, surface finish, surface treatment, homogeneity, porosity, and so on. Ultimately, the quality of the chemical analysis is dependent on the quality of the analytical specimen. As a rule, the analyst should practice good...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001434
EISBN: 978-1-62708-236-5
..., and characteristic of that resulting from fatigue. The origin of the major crack was associated with a crescent-shaped area immediately below the weld deposit. This showed brittle fracture characteristics and appeared to be an initial crack that occurred at the time of welding and from which the fatigue crack...
Abstract
One of the connecting rods of a vertical, four-cylinder engine with a cylinder diameter of 5 in. failed by fatigue cracking just below the gudgeon-pin boss. Failure took place in line with the lower edge of a deposit of weld metal. The fracture surface was smooth, conchoidal, and characteristic of that resulting from fatigue. The origin of the major crack was associated with a crescent-shaped area immediately below the weld deposit. This showed brittle fracture characteristics and appeared to be an initial crack that occurred at the time of welding and from which the fatigue crack subsequently developed. The rod was made from a medium carbon or low-alloy steel in the hardened and fully tempered condition. Evidence indicated that, following modification to the oil feed system, the rod that broke was returned to service with fine cracks present immediately below the weld deposit, which served as the starting points of the fatigue cracks. Following this accident, the remaining three rods (which had been modified in a similar manner) were replaced as a precautionary measure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
...Abstract Abstract This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials. aerospace industry automotive industry chemical corrosion...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... Wear of Metals Deformation during Impact In bodies subjected to repetitive impulse loading, characteristic subsurface zones have been observed for a large variety of materials under various test conditions (with both normal and compound impact) ( Ref 4 ). In general, three subsurface...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... impart two-body wear damage to component parts. They are not constrained by another solid, as distinguished from grinding, which is discussed later. Abrasive Particle Characteristics Abrasive particle characteristics, such as shape, density, size, hardness, and their relation to wear rate...
Abstract
This article focuses on the corrosion-wear synergism in aqueous slurry and grinding environments. It describes the effects of environmental factors on corrosive wear and provides information on the impact and three-body abrasive-corrosive wear. The article also discusses the various means for combating corrosive wear, namely, materials selection, surface treatments, and handling-environment modifications.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
.... , Characteristics of Metallic Subsurface Zones in Sliding and Impact Wear , Wear , Vol 74 , 1981 , p 131 – 142 10.1016/0043-1648(81)90199-X 13. Engel P.A. , Impact Wear of Materials , Elsevier , Amsterdam , 1976 14. Stachowiak G.W. and Batchelor A.W. , Engineering Tribology...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001901
EISBN: 978-1-62708-218-1
.... In the worst case scenario, such failures would lead to unzipping of entire molecules into thousands of CH 2 O mers, which because of the low boiling point (−21°C), would lead to huge mass losses and severely compromised structural characteristics. To test this hypothesis, the weight percents as a function...
Abstract
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze an automotive polyoxymethylene (POM) sensor housing that was depolymerizing during service. It was found that a combination of heat, oxygen, and sulfuric acid attacked and caused premature failure of the part. POM should not be selected for automotive applications where elevated temperatures and acidic environments can exist. If exposure to acid is suspected, sodium bicarbonate should be applied to neutralize the surrounding environment, followed by copious quantities of water, and repeated until no effervescence is observed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001851
EISBN: 978-1-62708-241-9
... Ω r 2 cos θ r + Ω ̇ r sin θ r (Eq 11) F By = m B e Ω r 2 sin θ r − Ω ̇ r cos θ r where m B is the unbalance mass located at a distance e from the geometrical shaft center, and Ω r is defined as: Ω r = d θ r...
Abstract
Shaft misalignment and rotor unbalance contribute to the premature failure of many machine components. To understand how these failures occur and quantify the effects, investigators developed a model of a rotating assembly, including a motor, flexible coupling, driveshaft, and bearings. Equations of motion accounting for misalignment and unbalance were then derived using finite elements. A spectral method for resolving these equations was also developed, making it possible to obtain and analyze dynamic system response and identify misalignment and unbalance conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
..., transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely...
Abstract
A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy, transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely introduced during the steelmaking process.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... the organic contaminants observed include generic hydrocarbon fragments and polydimethyl siloxane (PDMS), often referred to as silicone. (Note that XPS and AES found little, if any, Si on the stainless steel surface.) A characteristic PDMS fragmentation pattern is seen with peaks at positive ion masses 73...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
.../s (330 ft/s). This speed can produce a pressure of several hundred MPa, sufficient to damage most common materials ( Ref 1 ). Fig. 1 Numerical simulation of a bubble collapse near a solid surface showing evolution of the bubble during collapse Characteristics of the Cavitation Process...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001095
EISBN: 978-1-62708-214-3
...Abstract Abstract A 20 ton polar crane motor fell during a 3400 kg (7500 lb) lift, narrowly missing personnel working beneath the crane. Witnesses reported that the motor fall was preceded by a falling oil mass, and it was believed that the motor was intact prior to impact. The maintenance...
Abstract
A 20 ton polar crane motor fell during a 3400 kg (7500 lb) lift, narrowly missing personnel working beneath the crane. Witnesses reported that the motor fall was preceded by a falling oil mass, and it was believed that the motor was intact prior to impact. The maintenance history of the crane showed that the motor had been removed, repaired, and reinstalled 2 years prior to the failure. Observations of oil leakage were noted yearly up to the failure. The motor casing was held onto the adapter plate by eight 14-20 UNC x 25 mm (1 in.) long hex socket cap screws. Examination of the motor adapter plate, motor casing shards (aluminum), the gear side of the motor housing, and seven fractured cap screws (ASTM A574) showed that the motor casing was intact at the time of “uncontrolled descent” and that the screws had failed by high nominal stress reverse bending load fatigue, which was probably the result of insufficient torque on the bolts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001506
EISBN: 978-1-62708-217-4
... fitting. A bracket which supports the in-line fuel flow transducer also was found broken. Examination of the elbow fracture revealed characteristics of low-cycle fatigue failure. Examination of the support bracket fractures revealed a high-cycle mode of fatigue failure, with the primary fatigue extending...
Abstract
A single-engine aircraft was climbing to 8000 ft when the engine suddenly lost power. The landing gear was torn off during the emergency landing. During the field investigation, the fuel line was found to be separated from the fuel pump outlet due to a failure of the elbow fitting. A bracket which supports the in-line fuel flow transducer also was found broken. Examination of the elbow fracture revealed characteristics of low-cycle fatigue failure. Examination of the support bracket fractures revealed a high-cycle mode of fatigue failure, with the primary fatigue extending along the full length of the 90 deg bend in the bracket. It was concluded that the failure was caused by an incorrectly-installed support bracket. It was recommended that the installation procedure be clarified.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... center on the techniques used to evaluate the composition and structure of the material. Unlike metals, polymers have a molecular structure that includes characteristics such as molecular weight, crystallinity, and orientation, and this has a significant impact on the properties of the molded article...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001605
EISBN: 978-1-62708-217-4
...Abstract Abstract After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation...
Abstract
After a quick-release fitting of an ejection seat broke, an investigation was performed to determine the manner and cause of crack propagation. Most fractography-based investigations aim to characterize only qualitative characteristics, such as the fracture orientation and origin position, topology, and details of interactions with microstructural features. The aim of this investigation was to use quantitative fractography as a tool to extract information, including striation spacing and size of the stretched zone, in order to make a direct correlation with fracture mechanic concepts. As the crack propagated, striations were created on the fracture surface as a result of service-induced load changes. The size of the striations were measured to estimate crack propagation rate. Remaining lifetime estimates were also made. The dimensions of plastically stretched zones found at the tips of the cracks were evaluated using electron micrograph stereo image pairs to characterize local fracture toughness. To complete the failure analysis, nondestructive evaluation, metallographic examination, and chemical investigations were carried out. No secondary cracks could be found. Most of the broken parts showed that the microstructure, the hardness, and the chemical composition of the Al-alloy were within the specification, but some of the cracked parts were manufactured using a different material than that specified.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
.... The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
...Basic characteristics of engineering polymers Table 1 Basic characteristics of engineering polymers Location (a) Characteristics Examples (b) 1 Flexible and crystallizable chains PEPPPVCPA 2 Cross-linked amorphous networks of flexible chains Phenol-formaldehyde cured...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.