Skip Nav Destination
Close Modal
By
A. K. Das, B. M. Thippeswamy, J. Prasad
By
Qiming Zhang, Babak Kondori, Xing Qiu, Jeffery C.C. Lo, S.W. Ricky Lee
By
Bence Bartha
By
B.V. Krishna
By
Hasan Shaikh, H.S. Khatak, J.B. Gnanamoorthy
By
Charlie R. Brooks
By
Joyce M. Hare
By
A.M. Abdel-Latif, M. Roth, M. Yanishcvsky
By
David J. Diaz, Steve E. Benson
Search Results for
masking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 34
Search Results for masking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Solder mask defined and nonsolder mask defined pad opening configurations. ...
Available to PurchasePublished: 30 August 2021
Fig. 15 Solder mask defined and nonsolder mask defined pad opening configurations. PCB, printed circuit board
More
Image
Simplified daisy chain circuit. PCB, printed circuit board; NSMD, nonsolder...
Available to PurchasePublished: 30 August 2021
Fig. 24 Simplified daisy chain circuit. PCB, printed circuit board; NSMD, nonsolder mask defined; ENIG, electroless nickel and immersion gold
More
Image
SEM fractographs of the inside radius of the bend. (a) A distinct intergran...
Available to PurchasePublished: 01 December 1993
Fig. 5 SEM fractographs of the inside radius of the bend. (a) A distinct intergranular fracture surface for the entire tube thickness at the inside radius of the bend. (b) The oxide-type corrosion product masking the intergranular facets of the fracture.
More
Image
SEM micrographs of sample SEM 2. (a) Overview of the surface defects in gro...
Available to Purchase
in Failure of a Boiler Feed Pump Second-Stage Impeller
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 4 SEM micrographs of sample SEM 2. (a) Overview of the surface defects in group 2. The vertical lines are grinding marks. (b) Higher-magnification view of the dendritic structure af the pore indicated by the arrow in (a).The dendrites are slightly masked by a corrosion product.
More
Book Chapter
Failure of Aircraft Wing Leading Edge Panel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
... initiation in the middle fastener holes was masked by excessive corrosion. It was recommended that future panels be manufactured of 2024 aluminum. ...
Abstract
Cracks were found on the wing leading edge of a test aircraft made from AZ31B magnesium alloy. Crack lengths were approximately 230 mm (9 in.) long on the left side and approximately 130 mm (5 in.) long on the right side. The cracks ran parallel to the leading edge. The 230-mm (9-in.) crack was received for examination. Visual examination of the submitted panel revealed two cracks. One crack ran through six adjacent fastener holes. Sections of the beveled edges of the holes were missing and corrosion was evident. Visual examination of the fastener holes after separation of the crack showed that the fracture faces were corroded. Optical examination of either side of the middle group of fastener holes showed that the area of suspected crack initiation had suffered excessive corrosion. Examination of the holes on the end of the crack showed fracture characteristics typical of fatigue and/or corrosion fatigue. It was concluded that crack propagation of the fracture in the wing panel occurred by a combination of corrosion and high-cycle fatigue in the end fastener holes. It was recommended that future panels be manufactured of 2024 aluminum.
Book Chapter
Fatigue Failure of Piston Rod from Hydraulic Press
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001413
EISBN: 978-1-62708-223-5
... in B whereas that of the other is masked, being in the root of C. The arrows marked on the photograph illustrate the mode of propagation. Final fracture occurred in the small area indicated by A. A Longitudinal section through the screw thread on the piston rod is seen in Fig. 3...
Abstract
The fractured end of a piston rod of a hydraulic press failed in line with the leading face of the piston retaining nut. Although the nut apparently had been seated uniformly, the face was polished, indicating that relative movement between it and the piston had taken place. Failure resulted from the culmination of two principal fatigue cracks which developed on approximately parallel planes from the roots of adjacent threads. A longitudinal section through the screw thread on the piston rod showed it had been carburized but not hardened, and that subsequent surface de-carburization to a depth of approximately 0.001 in. had occurred. It was concluded that insufficient tightening, as evidenced by the polish markings, was the main reason for failure, the portion of the rod therefore being subjected to a greater variation of cyclic stress during operation. The presence of the de-carburized layer lowered its resistance to the initiation of a fatigue crack to that of iron, considerably less than the resistance of the mild steel from which the rod was made and well below that shown by the carburized layer.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001906
EISBN: 978-1-62708-217-4
... inspection (a central conductor shot and a head-shot) to assure that any laps or seams were detected. The handling of the lugs subsequent to inspection was also improved in an effort to reduce the masking of defective parts. Thousands of lugs were scrapped as a result of this re-inspection, and the contracts...
Abstract
Suspension lugs fabricated from AISI 4340 steel used to facilitate loading of bombs onto the underside of military aircraft could not sustain required loads during routine proof load testing. Three failed lugs underwent visual examination, chemical analysis, metallography, hardness testing, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. It was determined that the failures were due to forging defects. Both forging laps and seams acted as stress concentrators when the lugs were loaded during proof testing.
Book Chapter
Cracking of High Strength Steel Piston Rod During Chrome Plating
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001556
EISBN: 978-1-62708-218-1
... the plated side, the inner surface of the eye ends being masked). It was ascertained during investigation that 40 mm. diameter forged piston rods were subjected to plating after carrying out heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were...
Abstract
A few Cr-Mo steel piston rods from different production batches were found identically cracked in the eye end near the radius after chrome plating and baking treatment. Two of them cracked in the plating stage itself instantly broke on slight tapping. Cracking initiated from the outer base surface of the forked eye end. The 40 mm diam forged piston rods were subjected to plating after heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were varied from 3 to 11 h. The brittle cracking along forked eye-end radius portion was attributed to hydrogen embrittlement that occurred during chrome plating.
Book Chapter
Adhesion Failures Caused by Thin-Film Contaminants
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045926
EISBN: 978-1-62708-235-8
... of the clad bimetal onto an epoxy film, so that the end product contained nickel-phosphorus sandwiched between copper and epoxy, with a chromate conversion layer on the epoxy side of the nickel-phosphorus. Peel test samples were prepared by masking and etching the copper ( Fig. 1 ). Testing revealed...
Abstract
A batch of bimetal foil/epoxy laminates was rejected because of poor peel strength. The laminates were manufactured by sintering a nickel/phosphorus powder layer to a copper foil, cleaning, then chromate conversion coating the nickel-phosphorus surface, and laminating the nickel-phosphorus side of the clad bimetal onto an epoxy film, so that the end product contained nickel-phosphorus sandwiched between copper and epoxy, with a chromate conversion layer on the epoxy side of the nickel-phosphorus. Peel testing showed abnormally low adhesion strength for the bad batch of peel test samples. Comparison with normal-strength samples using XPS indicated an 8.8% Na concentration on the surface of the bad sample; the good example contained less than 1% Na on the surface. After 15 min of argon ion etching, depth profiling showed high concentrations of sodium were still evident, indicating that the sodium was present before the chromate conversion treatment was performed. A review of the manufacturing procedures showed that sodium hydroxide was used as a cleaning agent before the chromate conversion coating. Failure cause was that apparently the sodium hydroxide had not been properly removed during water rinsing. Thus, recommendation was to modify that stage in the processing.
Book Chapter
Failures in Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... different soldering pad opening configurations: solder mask defined (SMD) and nonsolder mask defined (NSMD). The SMD pad opening has a higher risk of IMC fracture under high-loading-rate conditions, while the NSMD pad opening has a higher risk of pad cratering ( Ref 32 ). Fig. 15 Solder mask defined...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Book Chapter
Nondestructive Evaluation Applications for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
... analysis on an assembled component. Interference from other parts of the system such as insulation, paint, wiring, and enclosures all add uncertainty to the RT inspection and may reduce sensitivity. In service, components can develop dents, dings, corrosion and other features that can mask, disturb...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Book Chapter
Failure of Derricking Shaft of Dragline Excavator
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001472
EISBN: 978-1-62708-221-1
... beam and possibly serve to mask those from any crack that may have been present. In order to ascertain the minimum depth of cracking that it would be possible to detect in the presence of the influence of the hole a series of tests was carried out on the other, intact end of the shaft. The response...
Abstract
Severe damage to the jib of a dragline excavator resulted from failure of the shaft which carried the derricking sheaves at the apex of the "A" frame. Failure occurred within the hub of the center sheave of the group of three at the right-hand end of the shaft. The shaft was manufactured from a 0.5% carbon, 1% chromium steel heat treated to give a hardness value of 300 VDP. The material was in the hardened and tempered condition and showed no abnormalities which would predispose to early failure. The content of non-metallic matter was only of nominal amount. Failure of the shaft resulted from fatigue due to the cumulative action of the repeated stresses which it had been subjected to during service. The shaft had been subjected to repeated stress applications sufficient to result in the initiation and development of a fatigue crack at the radial hole. To prevent a repetition of the failure it was recommended that the stress-raising effect of the holes be reduced by chamfering or preferably rounding-off the edges. Furthermore, rotation of the shaft should be prevented so that the radial holes were positioned on the opposite side of the shaft.
Book Chapter
Hydrogen Induced Cracking of a Tappet Adjusting Screw
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001613
EISBN: 978-1-62708-235-8
...°) during room temperature testing resulted in cracking of the screws. Conclusions The tappet adjusting screws failed by hydrogen embrittlement. This conclusion was confirmed when a baking treatment at around 150–200 °C after plating, in conjunction with masking the threaded portion of the screw...
Abstract
The electroplated tappet adjusting screws used in diesel engines failed during initial bend testing. The analysis of the failure showed that the fracture was nucleated from the subsurface of the screw. The fracture surface was intergranular at the ID and OD region and microvoid coalescence in the center. The improper baking after electroplating of the screw led to H2-induced blistering/cracking. The high strength of the threaded region of the adjusting screw increased the failure propensity.
Book Chapter
Radiographic Inspection for Creep Fissures in Reformer-Furnace Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060144
EISBN: 978-1-62708-234-1
... by masking the smaller fissures. Liquid penetrant inspection and macroexamination of the specimen tube revealed the gross fissuring that was easily detectable and those fissures that were undetectable by radiography. The largest fissures undetectable by radiography were approximately 3 mm (0.125...
Abstract
Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring was instigated as a result of the failure. It was concluded after laboratory radiography and macroexamination that if the fissure were large enough to show on a radiograph, either with or without the catalyst, the tube could be expected to fail within one year. The set up for in-service radiograph examination was described. The tubes of the furnace were radiographed during shut down and twenty-four tubes in the first furnace and 53 in the second furnace showed significant fissuring. Although, radiography was concluded to be a practical technique to provide advance information, it was limited to detecting fissures caused by third-stage creep in tubes because of the cost involved in removing the catalysts.
Book Chapter
Failure of a Service Water Pump Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001370
EISBN: 978-1-62708-215-0
... on the fracture surface. The fracture surface was helical in shape, smooth, and flat. Some portion of the fracture surface was found to have been rubbed. A cavity near the center was observed ( Fig. 3 ). The presence of corrosion deposits masked the macroscopic fracture details. After cleaning with 50...
Abstract
A service water pump in a nuclear reactor failed when its shaft gave way. The fracture originated in the threaded portion of the sleeve nut on the drive-end side of the shaft. Results of the failure analysis showed that the cracking initiated at the thread root as a result of corrosion fatigue. Crack propagation occurred either by corrosion or mechanical fatigue. Evidence was found indicating high rotary bending stresses on the shaft during operation. The nonstandard composition of the En 8 steel used in the shaft and irregular maintenance reduced the life of the shaft. Recommendations included use of a case-hardened En 8 steel with the correct composition and regular maintenance of the pump.
Book Chapter
Fatigue Fracture of Stainless Steel Wires in an Electrostatic Precipitator at a Paper Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... of the beach marks pointed to the origin of the fatigue fracture. The fatigue fracture surface is shown at high magnification in Fig. 4 . No fatigue striations were observed, but they may have been masked by corrosion products formed on the fracture surface. Figure 5 shows the final overload fracture...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.
Book Chapter
Failure of a Boiler Feed Pump Second-Stage Impeller
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001084
EISBN: 978-1-62708-214-3
... of the dendritic structure af the pore indicated by the arrow in (a).The dendrites are slightly masked by a corrosion product. Metallography Microstructural Analysis Four metallographic samples, MET 1 to 4, were sectioned from various areas near the fracture surface and through the casting defects...
Abstract
Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud/vane junction. Sections cut from the impeller were examined visually and by SEM fractography. Microstructural, chemical, and surface analyses and surface hardness tests were conducted on the impeller segments. The results indicated that the impeller failed in fatigue with casting defects increasing stress and initiating fracture. In addition, the composition and hardness of the impeller did not meet specifications. Revision of the casting process and institution of quality assurance methods were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... mode with corrosion product. Fig. 5 SEM fractographs of the inside radius of the bend. (a) A distinct intergranular fracture surface for the entire tube thickness at the inside radius of the bend. (b) The oxide-type corrosion product masking the intergranular facets of the fracture...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Book Chapter
Failure Investigation of a Structural Component of the Main Landing Gear of a Transport Aircraft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... and paint masked the pit. Furthermore, it appears that the pit had been missed during the various stages of inspection either during manufacture or overhaul. At any rate, this pit would have been extremely hard to detect even by a diligent inspector. Fig. 20 An overview of the corrosion pit that had...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Book Chapter
Field Metallography Aids NDT of Evaluation of Indications in Turbine Main Column Horizontal Plate Welds at Power Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001661
EISBN: 978-1-62708-229-7
... preparation by metal removal may be necessary in areas where surface irregularities may mask discontinuous indications. Prior to the examination, areas plus the surface within at least one inch of the examination areas shall be dry and free of dirt, grease, lint, scale, welding flux, spatter, oil, or other...
Abstract
An evaluation of indications in the main turbine building column horizontal plate welds was conducted by the joint efforts of field metallography and nondestructive examinations. The turbine building main column horizontal plate welds were selected at random and were inspected to find discontinuities, metallurgical evaluation of the discontinuities, analysis of any failure modes, and determination of the best repair techniques. The welds were made with prequalified joints in accordance with AWS D1.1-77 and required only visual inspection. More sensitive inspection methods were applied to the welds in order to better define the indications found with the visual inspections. Cracks were found in 17 field welds and in two test plate welds. The causes of the cracking are related to the weld design and installation procedure. Three field welds were rejected because of the depth of the cracks. The NDT inspections, evaluations, method of field metallography, analysis and conclusions are discussed with recommendations for corrective actions in the following report.
1