1-20 of 144 Search Results for

martensitic transformation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... with a sodium hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001257
EISBN: 978-1-62708-235-8
... to the heat of welding ( Fig. 3 ). But the cracked pipe showed a ferrite-free mixed structure in the unaffected part consisting of pearlite and bainite phases ( Fig. 4 ). In the vicinity of the weld seam it had become coarse grained and was transformed into martensite ( Fig. 5 ). The cracking open...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... products that are present in steel. The first step in the transformation process is to heat the steel to its austenitizing temperature. The steel is then cooled rapidly to avoid the formation of pearlite, which is a relatively soft transformation product; to maximize the formation of martensite...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... not transform into austenite becomes tempered. Microstructure in this zone consists of refined ferrite and pearlite with minor amount of tempered martensite as seen in Fig. 7(e) . Figures 7(f) , 8(e) and 9(c) show the microstructures produced in the BM of un-cracked and cracked specimen and consist mainly...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition to the weld. Thus...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... critical transformation temperature of 845 °C (1550 °F). Quenching from temperatures above 845 °C (1550 °F) can induce a martensitic transformation ( Fig. 4 ); thus, welds and weld heat-affected zones (HAZs) may partially transform. Nickel (Ni) is not intentionally added to alloy 430, but its presence...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047694
EISBN: 978-1-62708-219-8
... the martensite content sufficiently for the welds to pass the wrap test. Corrective Measures The postweld heat treatment was standardized on the 760 °C (1400 °F) transformation treatment to obtain consistent tensile strengths of about 245 kg (540 lb) and elongations above 8%. In addition, the shape...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... and contraction that occurs within a part because of thermal gradients during heating and cooling. In addition to thermal stresses, steels are subjected to transformation stresses when they are hardened to martensite during quenching. Some specific problem areas associated with distortion and cracking...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046044
EISBN: 978-1-62708-235-8
... in the metal of the three cracked components. Bend tests verified the conclusion that the most likely mechanism of delayed quench cracking was isothermal transformation of retained austenite to martensite under the influence of residual quenching stresses. Recommendations included modifying the quenching...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0090639
EISBN: 978-1-62708-227-3
... to the cold-working coining process, and high residual stresses created by welding. Recommendations included the removal of the brittle, carbon-rich transformed martensite layer introduced by flame cutting and the application of a localized stress-relief heat treatment process. X-ray diffraction residual...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0046238
EISBN: 978-1-62708-231-0
.... Visual examination revealed beach marks typical of fatigue cracks that had nucleated at the base of the longitudinal oil hole. Micrographs of sections revealed a remelt zone and an area of untempered martensite within the region of the cracks. However, review of inspection procedures disclosed the pins...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001685
EISBN: 978-1-62708-235-8
..., to obtain a complete (100%) transformation to martensite, a cooling rate of 200°C/s is required. This task is difficult to accomplish, often leading to the formation of a duplex structure consisting of the α′-martensitic phase and the (α + δ) phase. During the aging process, the α′-martensitic phase...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
.... The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... and a martensitic transformation during cooling. The fine arrays of transverse cracks observed near the fracture ends of the broken wires were a consequence of bending of the brittle martensitic skin regions and were eventually instrumental in accentuating failure. The brittle breakages of Z-profile wires...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047830
EISBN: 978-1-62708-235-8
..., the forgings were normalized, hardened and tempered to 28 to 32 HRC to increase fatigue strength. The quenching procedure was changed to produce a more complete martensite transformation and to increase the ratio of yield strength to tensile strength. The surfaces were inspected by the magnetic-particle method...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
..., The area in Fig. 5 is already carburized considerably but the steel is still hypo-eutectoid as indicated by the precipitation of ferrite at the austenitic grainboundaries. Further transformation has taken place in the pearlite stage and partly into the intermediate and martensitic stages. The area shown...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... residual stresses created by dimensional changes during cooling, large temperature gradients between the surface and center, and the volume change accompanying the austenite-to-martensite transformation. Ductile steels will plastically flow to relieve these stresses. However, heat-treated high-carbon...