1-20 of 369 Search Results for

martensite

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047694
EISBN: 978-1-62708-219-8
... martensite present in the weld area after the heat treatment. The test failures of the AISI 1080 steel wire butt-welded joints were due to martensite produced in cooling from the welding operation that was not tempered adequately in postweld heat treatment, and to poor wire-end preparation for welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... 347 stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047579
EISBN: 978-1-62708-234-1
.... The weld deposits were of type 347 stainless steel, and the flanges were type 304 stainless steel. Metallographic examination of the failed studs revealed that the HAZs contained regions of martensite and that intergranular cracks, which initiated at the stud surfaces during welding, propagated to complete...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001352
EISBN: 978-1-62708-215-0
...Abstract Abstract Repeated failures of high-pressure ball valves were reported in a chemical plant. The ball valves were made of AFNOR Z30C13 martensitic stainless steel. Initial examination of the valves showed that failure occurred in a weld at the ball/stem junction end of austenitic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
... in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
... internal reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048031
EISBN: 978-1-62708-224-2
... it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer. Surface martensite Wire breakage Steel wire rope Abrasive wear Brittle fracture Steel wire ropes of different constructions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001159
EISBN: 978-1-62708-232-7
... pipe had become coarse-grained and acicular, and the microstructure of the welding seam had become predominantly martensitic as a result of the mixing of the weld metal with the fused pipe material. The chrome steel pipe had become partially transformed to martensite or bainite at the transition...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001900
EISBN: 978-1-62708-225-9
.... In the craters the residue of partial melting was seen. Ball bearings Electric arcs Electric motors Grounding (electrical) Martensite Melting Scanning electron microscopy 52100 UNS G52986 (Other, miscellaneous, or unspecified) failure Incorrect grounding of an electric motor resulted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090959
EISBN: 978-1-62708-222-8
..., but investigation (visual inspection, 2% nital etched 8.9x/196x images) showed that the typical core microstructure contained alternating bands of martensite and bainite. The conclusion was that the nonuniform microstructure was likely responsible for the atypical brittle behavior of the blades, and the observed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
... and not in the heat-affected zone of the forged steel shaft. Microscopic investigation and chemical analysis of the steel shaft revealed presence of martensite (offered a path of easy crack propagation) around the fusion line and dilution of the weld metal by the carbon steel shaft. The microstructure was found...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... raceway. The lower hardness values were attributed to improper flame hardening. It was confirmed by metallographic examination of a 3% nital etched sample that the inner ring (tempered martensite and ferrite) and the outer ring (ferrite, scattered patches of pearlite, and martensite) were not properly...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047187
EISBN: 978-1-62708-225-9
... on the side of the teeth that came into contact with the opposing gear during engagement. The microstructure at the periphery of a worn tooth at its unworn side consisted of coarse acicular martensite with a large percentage of retained austenite. Pinion Failure: The teeth of the pinion exhibited severe...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046057
EISBN: 978-1-62708-225-9
...-etched micrographic examination showed a microstructure of tempered martensite with low inclusion content as well as a pit or burned spot on the outer area of the ring. The defect was approximately 0.18 mm (0.007 in.) deep and 0.5 mm (0.020 in.) in diam and had a hardness of 58 to 60 HRC. The base metal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
... the tool. The fracture progressed into the threaded section and formed a pyramid-shape fragment after it was initiated at approximately 45 deg through the hole in the square end. An irregular zone of untempered martensite with cracks radiating from the surface of the hole (result of melting around hole...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision of the design...