1-20 of 102

Search Results for marine corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes. Marine environments Materials...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001673
EISBN: 978-1-62708-227-3
... and copper reprecipitation. Heat exchanger tubes Marine environments Sulfides 90Cu-10Ni Intergranular corrosion The failure of a heat exchanger tube in a marine engine resulted in flooding of the vessel and subsequently sinking it. The coolant utilized in this engine was nonrecirculated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... C64700. Marine environments Materials selection Retainers C65500 UNS C65500 Stress-corrosion cracking Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... concentrations and formed cracks under repeated stressing. The cyclic stressing and corrosion in the cracks led to the failure on the inner ring. Recommendation The inner and outer rings should both be made from 17-4 PH (AISI type 630) stainless steel, which is more resistant to corrosive marine...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction...
Image
Published: 01 January 2002
Fig. 36 Aluminum alloy coupling nut that cracked by stress corrosion in a marine atmosphere. (a) Overall view of coupling nut. (b) View of the crack. 6×. (c) and (d) Micrographs of a section through the crack near the origin, showing appearance before and after etching. Both 100× More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy coupling nut that cracked by stress corrosion in a marine atmosphere. (a) Overall view of coupling nut. (b) View of the crack. 6×. (c) and (d) Micrographs of a section through the crack near the origin, showing appearance before and after etching. Both 100× More
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091336
EISBN: 978-1-62708-234-1
... on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly. Marine environments Palladium oxide Tubes 304 UNS S30400 Crevice corrosion A steel tube meeting type 304 specification...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091678
EISBN: 978-1-62708-217-4
...) supported the conclusion that the cause of failure was SCC resulting from exposure to a marine environment. The fracture occurred in normal operation at a point where damage from pitting and intergranular corrosion acted as a stress raiser, not because of overload. The pitting and intergranular attack...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
... Abstract Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091761
EISBN: 978-1-62708-229-7
... tip fractured due to thermomechanical fatigue in its degraded state. Recommendations included special chromium or silicon-rich coating to minimize corrosion in gas turbines operating in a marine environment with operating temperatures in the range of type 2 corrosion (650 to 750 deg C, or 1200 to 1380...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... couples formed between precipitates and the alloy matrix, leading to severe intergranular attack. No recommendations were made. Marine environments Sensitization Ship hulls 5083 UNS A95083 Intergranular corrosion The 5 xxx series of aluminum alloys are often selected for weldability...
Image
Published: 15 January 2021
Fig. 22 Schematic diagram of shipboard engine corrosion rates of type I and type II hot corrosion versus temperature in a marine environment compared with the Arrhenius oxidation rate versus temperature. LTHC, low-temperature hot corrosion; HTHC, high-temperature hot corrosion. Courtesy of U.S More
Book Chapter

By Fulmer Research Institute Ltd.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
... Corrosion fatigue Pitting corrosion Failure occurred in the connector groove of a marine riser coupling from a drilling rig. The steel specified for this component was AISI 4142 (0.40 to 0.45 % C; 0.75 to 1.00 % Mn; 0,20 to 0.35 % Si; 0.80 to 1.10 % Cr; 0.15 to 0.25 % Mo) normalised from 900°C...
Image
Published: 01 June 2019
Fig. 1 Uncoated and aluminide-coated IN-713 turbine blades that failed by hot corrosion in a marine environment. (a) An uncoated blade showing splitting along the leading edge and swelling on the surface of the airfoil. 2.7x. (b) Section taken through the leading edge of an uncoated blade More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001696
EISBN: 978-1-62708-234-1
... coatings added after the investigation have proven effective in preventing subsequent such failures. Hydrochloric acid Launch pad tubing Marine environments 304 UNS S30400 Stress-corrosion cracking Background Information A section of 0.75 in (diameter) × 0.065 in (wall-thickness) 304...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001059
EISBN: 978-1-62708-214-3
...-corrosion cracking beneath the pitted areas on the OD. The likely cause of the cracking was chloride stress corrosion, with chlorides deriving from the marine atmosphere and concentrating under the insulation around the support rings. A complete insulation evaluation, including repair or replacement...
Image
Published: 15 January 2021
Fig. 47 Stress-corrosion cracking of an aluminum alloy coupling nut exposed to a marine atmosphere. (a) Overall view of the coupling nut. (b) Close-up view of the crack (arrow). Original magnification: 6×. Micrographs of a cross section prepared through the crack near the origin (c) before More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001103
EISBN: 978-1-62708-214-3
... content and at least the same yield strength. Steps to exclude seawater and any possible source of ammonia from the bolt shank were also suggested. Marine environments Aluminum bronze Intergranular fracture Stress-corrosion cracking Background An aluminum bronze propeller tap bolt from...