Skip Nav Destination
Close Modal
By
Christopher A. Walton, Benjamin E. Nesbit, Henrique M. Candia, Zachary A. Myers, Wilburn R. Whittington ...
Search Results for
manufacturing defect
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 354 Search Results for
manufacturing defect
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001443
EISBN: 978-1-62708-235-8
... Abstract Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present...
Abstract
Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present in this case could have been drawn without failure. Failure in service was due to overheating resulting from the inability of the conductor to carry the current where its cross section was reduced by the presence of a cavity. Another failure of a conductor occurred in one of the field coils of a direct-current motor. The mode of failure and the changes in the microstructure showed that fracture was due to a defective resistance butt-weld which had been made when the wire was in process of drawing. A further example of a conductor failure occurred in a 12 SWG copper connection between the rotor contactor and the resistance in a starter. A transverse section through the zone of failure showed an oxide layer extended almost completely across the plane of a weld, and also the grain growth that had occurred in this region.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... Abstract This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures...
Abstract
This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures of rubber articles, with numerous accompanying figures, are representative of the four root failure categories.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
.... No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most...
Abstract
Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting. Uniform corrosion is evident and two deep linear defects are present on impeller blade tips. In contrast, the undamaged impeller surfaces are covered with a dark oxide film. This and many other impellers in seemingly identical service conditions survive long lives with little or no apparent damage. No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most severe form of erosion corrosion. Cavitation damage to the protective oxide film caused the zirconium to lose its normally outstanding corrosion resistance. The root cause of the impeller failure is most likely the introduction of excessive air into the pump due to low liquid level, a bad seal or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
.... Very few overload failures were noted. A number of causes were identified: design deficiencies and manufacturing defects leading mainly to fatigue failures, and poor materials selection and improper maintenance as the principal causes of corrosion-related failures. The survey showed that a proper...
Abstract
Despite extensive aircraft landing gear design analyses and tests performed by designers and manufacturers, and the large number of trouble-free landings, aircraft users have experienced problems with and failures of landing gear components. Different data banks and over 200 failure analysis reports were surveyed to provide an overview of structural landing gear component failures as experienced by the Canadian Forces over the last 20 years on more than 20 aircraft types, and to assess trends in failure mechanisms and causes. Case histories were selected to illustrate typical problems, troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys. Very few overload failures were noted. A number of causes were identified: design deficiencies and manufacturing defects leading mainly to fatigue failures, and poor materials selection and improper maintenance as the principal causes of corrosion-related failures. The survey showed that a proper understanding of the failure mechanisms and causes, by thorough failure analysis, provides valuable feedback information to designers, operators and maintenance personnel for appropriate corrective actions to be taken.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
... moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition. golf club fracture stress concentration aluminum alloy casting voids mechanical testing bending moment A360 (3xx.x series, cast aluminum-silicon alloy...
Abstract
A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used to construct a finite element model to analyze material performance under failure conditions. In addition, a full scale structural test was conducted to determine failure strength. It was concluded that the club failed not from ground impact but from a force reversal at the bottom of the downswing. Large moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0089543
EISBN: 978-1-62708-226-6
... Abstract Threads of a bone screw (Co-Cr-Mo alloy, type ASTM F75) had broken off, and other threads had cracked. 15x sectioning showed porosity, and 155x magnification showed gas holes, segregation, and dissolved oxides. This supports the conclusion that manufacturing defects caused the failure...
Abstract
Threads of a bone screw (Co-Cr-Mo alloy, type ASTM F75) had broken off, and other threads had cracked. 15x sectioning showed porosity, and 155x magnification showed gas holes, segregation, and dissolved oxides. This supports the conclusion that manufacturing defects caused the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001906
EISBN: 978-1-62708-217-4
... defects 4340 UNS G43400 Metalworking related failures Introduction Component: MS3314 general purpose bomb suspension lug Manufacturing defects: Forging laps and seams Background Two MS3314 suspension lugs fabricated from AISI 4340 steel are threaded into each 500- and 1000-lb general...
Abstract
Suspension lugs fabricated from AISI 4340 steel used to facilitate loading of bombs onto the underside of military aircraft could not sustain required loads during routine proof load testing. Three failed lugs underwent visual examination, chemical analysis, metallography, hardness testing, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. It was determined that the failures were due to forging defects. Both forging laps and seams acted as stress concentrators when the lugs were loaded during proof testing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
...: Rockeye Cluster Bomb tailcone assemblies Manufacturing defects: Casting heat checks, inclusions, porosity, shrinkage Background ARL conducted an analysis of two semicircular aluminum die-castings (Alloy A356) that are components of the tailcone assembly of the Rockeye Cluster Bomb. As the name...
Abstract
Cluster bomb tailcone assemblies each containing two aluminum die-cast components were rejected because of the poor surface condition of the die castings. Numerous heat checks were found on the surfaces of the tailcones and radiographic inspection revealed inclusions, gas holes, and shrinkage defects in the castings. Most of the components failed to meet required mechanical properties because of these casting defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001909
EISBN: 978-1-62708-235-8
... parameters resulted in acceptable welds. Bombs (weapons) Bomb fins Welded joints Weld defects Low-carbon steel Joining-related failures Introduction Component: MK#83 and MK#84 general purpose bomb fins Manufacturing defects: Nonpenetrating plug welds Background A First Article...
Abstract
Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding parameters resulted in acceptable welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001905
EISBN: 978-1-62708-217-4
... fin retaining band Manufacturing defects: Inadequate work hardening/nonconforming dimensions Background A retaining band from the MK#15 Mod 6 Snakeye bomb fin unwrapped during a practice flight, causing the bomb fins to deploy and triggering an adjacent retaining band to unravel. The pilot...
Abstract
A bomb retaining ring fabricated from type 302 stainless steel unwrapped during a practice flight, causing the bomb fins to deploy. The retaining ring was able to unwrap itself because it was thinner and softer than required. Hardness testing, metallography, and tensile testing confirmed that the component was in the annealed condition and not in the required work-hardened 1/4-hard condition.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003505
EISBN: 978-1-62708-180-1
... Abstract This article discusses the three legal theories on which a products liability lawsuit is based and the issues of hazard, risk, and danger in the context of liability. It describes manufacturing and design defects of various products. The article explains a design that is analyzed from...
Abstract
This article discusses the three legal theories on which a products liability lawsuit is based and the issues of hazard, risk, and danger in the context of liability. It describes manufacturing and design defects of various products. The article explains a design that is analyzed from the human factors viewpoint and details the preventive measures of the defects, with examples. It presents four paramount questions relating to the probability of injury which are asked even when one executes all possible preventive measures carefully and thoroughly.
Image
in Retrieval and Analysis of Surgical Implants in Brazil: The Need for Proper Regulation
> ASM Failure Analysis Case Histories: Medical and Biomedical Devices
Published: 01 June 2019
Fig. 4 (a) Failure of a stainless steel femoral nail plate in the region with severe reduction in thickness; (b) presence of manufacturing defects on the nail surface, such as cutting-edge and machining marks (see arrow C); (c) general view of the fracture surface showing two flat regions
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001425
EISBN: 978-1-62708-235-8
... was discovered running the entire length. Examination of a section through the pipe containing the defect, showed this to be a scarf-welded pipe, only about half the section of the scarf having been satisfactorily welded together. It was concluded that both pipes had been defective at the time of manufacture...
Abstract
An 850 ft. long steam main working at a pressure of 120 psi ruptured. Two lengths of pipe were submitted for examination, one containing the rupture and the other from an unaffected part removed to facilitate repair. The rupture surfaces were smooth, suggesting that the failure had taken place either at a weld in the pipe or at a discontinuity in the material. Microscopic examination through the joints at the ends of the rupture confirmed that the pipe had been made from strip and the edges lap-welded. The second case concerned an 8 in. diam pipe in which a longitudinal defect was discovered running the entire length. Examination of a section through the pipe containing the defect, showed this to be a scarf-welded pipe, only about half the section of the scarf having been satisfactorily welded together. It was concluded that both pipes had been defective at the time of manufacture and that service conditions had served to extend the defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001907
EISBN: 978-1-62708-217-4
... bolts Grain flow Carburizing Hy-Tuf UNS K325599 Heat treating related failures Metalworking related failures Stress-corrosion cracking Introduction Component: LAU-7 missile launcher attachment bolts Manufacturing defects: Machining rather than forging/inadvertent carburization...
Abstract
Aircraft missile launcher attachment bolts fabricated from cadmium-coated Hy-tuf steel were found broken. Subsequent analysis of the broken bolts indicated three causes of failure. First, the bolts had been carburized, which was not in conformance with the heat treating requirements. Second, macroetching showed that the bolts has been machined from stock rather than forged, and the threads cut rather than rolled. It was also determined that hydrogen-assisted stress-corrosion cracking also played a part in the failure of the high-strength bolts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001631
EISBN: 978-1-62708-222-8
... Vendor A. There is obviously a lack of quality control in processing at the manufacturer. Because the consumer is not expected to perform a tensile test on the box of hooks before the hooks are used, this is an example of a manufacturing defect as defined in the majority of product liability law...
Abstract
Failure analysis of a fishhook that broke during retrieval is described. Although the broken hook was discarded, several companion hooks were analyzed (chemistry, microhardness, metallographic cross section, and tensile properties) as were comparable products made by other hook manufacturers. Tensile test data indicated that the companion hooks were significantly different from hooks made by other manufacturers. The hooks broke into several pieces and failed with little or no plastic deformation, while hooks made by other manufacturers plastically deformed and did not break during testing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... applications Decarburization Composition effects 18Ni Heat treating related failures Introduction Component: M61A1 breech bolt assembly Manufacturing defects: Improper chemistry, heat treatment Background ARL characterized unused and failed “aftermarket” breech bolt assemblies from...
Abstract
Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001690
EISBN: 978-1-62708-226-6
... forced to pay compensatory damages. This can occur even when the presence of a manufacturing defect is not observed. 6 Legal disputes among the involved parties (patient, doctor, insurance company, hospital, and manufacturer) are, in general, complex. Results often depend on the documentation...
Abstract
This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis of IPT, in Brazil. Investigation revealed that most of the samples were not in accordance with ISO standards and presented evidence of corrosion assisted fracture. Additionally, some components were found to contain fabrication/processing defects that contributed to premature failure. The implant of nonbiocompatible materials results in immeasurable damage to patients as well as losses for the public investment. It is proposed that local sanitary regulation agencies create mechanisms to avoid commercialization of surgical implants that are not in accordance with standards and adopt the practice of retrieval analysis of failed implants. This would protect the public health by identifying and preventing the main causes of failure in surgical implants.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048405
EISBN: 978-1-62708-226-6
... secondary crack is shown at thread site (arrow). 55×. (c) Fatigue striations on fracture surface Corresponding to the energy-dispersive x-ray analyses, the screws ( Fig. 1a ) were manufactured from cold-worked remelted (R) type 316L stainless steel and showed no structural or manufacturing defects...
Abstract
Type 316LR stainless steel screws that failed by fatigue were studied. It was found that fatigue fracture can occur on different thread levels, depending on the loading situation. The initiation of secondary fatigue cracks was occasionally found parallel to the fracture plane. The screws were used with a relatively rigid plate to treat a fracture complication in the upper end of the femur. The fatigue failures were explained by signs of unstable fixation revealed by radiographs.
1