Skip Nav Destination
Close Modal
Search Results for
magnetism
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 278 Search Results for
magnetism
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Failure of Grade J-55 Electric Resistance Welded Production Tubing
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 2 Magnetic-particle indication of the longitudinal split in sample 1. ∼ 1 2 ×.
More
Image
Published: 01 December 1992
Fig. 2 View of the other striking surface of the hammer after magnetic particle testing. Note magnetic particle indications.
More
Image
Published: 01 January 2002
Fig. 16 Stress-corrosion cracks in steel pipe weld. (a) Magnetic particle enhancement of cracks in the weld of an equalizer line elbow section. Cracks were localized in the weld and HAZs. (b) Cracks initiated on the inside surface and propagated through the weld in a multiple branching mode.
More
Image
Published: 01 January 2002
Fig. 23 Macrograph showing a close-up view of the typical magnetic-particle indications observed on the disc side surfaces
More
Image
Published: 01 January 2002
Fig. 1 This die of manganese oil-hardening steel cracked (highlighted by magnetic powder) at the sharp change of section in quenching. A fillet or even an undercut could have eliminated the failure. Differential hardening which leaves the fillet soft can also help as can the use of an air
More
Image
Published: 01 January 2002
Fig. 19 Typical cracking found by fluorescent magnetic-particle inspection of the internal surface of a feedwater heater.
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 71 Magnetic-particle testing results from near fracture area 1. Arrows indicate crack locations
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 72 Magnetic-particle testing results from between fracture areas 2 and 3. Arrows indicate crack locations
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 73 Magnetic-particle testing results from near fracture area 3. Arrows indicate crack locations
More
Image
Published: 30 August 2021
Fig. 26 Photograph of magnetic-particle inspection of pipe with crack colonies typical of stress-corrosion cracking (SCC)
More
Image
Published: 30 August 2021
Fig. 31 Wet fluorescent magnetic-particle inspection photograph of outside pipe surface showing an SCC colony near the rupture area. Multiple similar colonies were observed both upstream and downstream of the rupture.
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 79 Typical cracking found by fluorescent magnetic-particle inspection of the internal surface of a feedwater heater
More
Image
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Cracking is shown by the red magnetic particles. The arrow identifies the “hump,” which occurs near the midpoint of the lug.
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001356
EISBN: 978-1-62708-215-0
... stressed components in a power plant. To reduce any electrical losses, they are often made from austenitic, non-magnetic alloys. They are shrunk onto the generator shaft after winding, and require a high yield and tensile strength to resist the high shrink and rotational stresses encountered. A schematic...
Abstract
A shrunk-fit 18 Mn-5Cr steel retaining ring failed without warning during normal unit operation of a 380 MW electrical generator. The cause of the ring failure was determined to be intergranular stress-corrosion cracking (IGSCC) because of the high strength of the ring material and the presence of moist hydrogen used to cool the ring. Factors which promoted the failure were higher than normal strength levels in the ring material, lower than normal ring operating temperatures, possible moisture in the lubrication oil system, periodic poor performance of the hydrogen dryers, and a ring design which allowed water to become trapped in a relief groove. These factors caused pitting in the ring in an estimated 100 hours of operation. The ring had been inspected previously 18 months prior to the failure and no defects or pitting were found. Calculations showed that a 0.127-cm (0.050-in.) deep pit could grow to a critical size in 3000 to 4000 hours of operation. To prevent further failures, it was recommended that the ring be replaced with an 18 Mn-18Cr alloy with superior resistance to IGSCC. A program of periodic inspection and replacement of other retaining rings in the system was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
..., a breakdown occurred due to bursting of the banding wires in several places. The wire, 0.064 in. diameter, was non-magnetic, being of the 18/8 Cr Ni type of austenitic stainless steel. Most of the fractures occurred in the immediate vicinity of the clips, as can be seen in Fig. 1 . Fig. 1 Failure...
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
... in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field...
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0046238
EISBN: 978-1-62708-231-0
... the pins had been magnetic-particle inspected by inserting a probe into the longitudinal hole. Evidence found supports the conclusions that the knuckle pins failed by fatigue fracture. The circular cracks at the longitudinal holes were the result of improper technique in magnetic-particle inspection...
Abstract
Within about one month, several knuckle pins (AMS 6470 steel failed, and required to have a minimum case hardness of 92 h15N, a case depth of 0.4 to 0.5 mm (0.017 to 0.022 in.), and a core hardness of 285 to 341 HRB) used in engines failed over a range of 218 to 463 h in operation. Visual examination revealed beach marks typical of fatigue cracks that had nucleated at the base of the longitudinal oil hole. Micrographs of sections revealed a remelt zone and an area of untempered martensite within the region of the cracks. However, review of inspection procedures disclosed the pins had been magnetic-particle inspected by inserting a probe into the longitudinal hole. Evidence found supports the conclusions that the knuckle pins failed by fatigue fracture. The circular cracks at the longitudinal holes were the result of improper technique in magnetic-particle inspection. Thermal transformation of the metal also causes a stress concentration that may lead to fatigue failure. Recommendations included insulating the conductor to prevent arc burning at the base of the longitudinal oil hole. Also, a borescope or metal monitor could be used to inspect the hole for evidence of arc burning from magnetic-particle inspection.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001516
EISBN: 978-1-62708-234-1
... in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between...
Abstract
This paper deals with disk drive failures that occur in the interface area between the head and disk. The failures often lead to the loss of stored data and are characterized by circumferential microscratches that are usually visible to the unaided eye. The recording media in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between head and disk asperities. The contact generates debris that, as it accumulates, increases contact pressure between the read-write head and the surface of the disk. Under sufficient pressure, the magnetic coating material begins wearing away, resulting in data loss.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001369
EISBN: 978-1-62708-215-0
...Abstract Abstract A crane long-travel worm drive shaft was found to be chipped during unpacking after delivery. Chemical analysis showed that the steel (EN36A with a case depth of 1 mm, or 0.04 inch did not meet specifications. Magnetic particle inspection revealed a crack on the side...
Abstract
A crane long-travel worm drive shaft was found to be chipped during unpacking after delivery. Chemical analysis showed that the steel (EN36A with a case depth of 1 mm, or 0.04 inch did not meet specifications. Magnetic particle inspection revealed a crack on the side of the shaft opposite the chip. Metallographic examination indicated that the case depth was approximately 2 mm (0.08 in.) and that a repair weld of an earlier chip had been made in the cracked area. The chipping was attributed to excessive case depth and rough handling. It was recommended that the shaft be returned to the manufacturer and a replacement requested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047710
EISBN: 978-1-62708-225-9
...Abstract Abstract A 9310 steel gear was found to be defective after a period of engine service. A linear crack approximately was discovered by routine magnetic-particle inspection of an electron beam welded joint that attached a hollow stub shaft to the web of the gear. The welding procedure...
Abstract
A 9310 steel gear was found to be defective after a period of engine service. A linear crack approximately was discovered by routine magnetic-particle inspection of an electron beam welded joint that attached a hollow stub shaft to the web of the gear. The welding procedure had a cosmetic weld pass on top of the initial full-penetration weld. There were no other known service failures of gears were welded by this method. One zone of the welded joint showed incomplete fusion, surrounded by two zones containing fatigue beach marks This indicated that the incomplete-fusion zone was the site at which primary fracture originated. The possible causes of incomplete-fusion include localized magnetic deflection of the electron beam, a momentary arc-out of the electron beam, and eccentricity in the small weld diam. The failure was attributed to fatigue originating at the local unfused interface of the electron beam weld, which had been the result of a deviation in the welding procedure. Examination of the possible causes of failure gave no evidence that a recurrence of the defect had ever occurred. Thus, there was no basis on which to recommend a change in design, material, or welding procedure.