Skip Nav Destination
Close Modal
Search Results for
magnetic particle testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 184 Search Results for
magnetic particle testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 January 2021
Image
in Primary Grain Boundary Cracks in Cast Ingots and Flaky Crankshafts
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 71 Magnetic-particle testing results from near fracture area 1. Arrows indicate crack locations
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 72 Magnetic-particle testing results from between fracture areas 2 and 3. Arrows indicate crack locations
More
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 73 Magnetic-particle testing results from near fracture area 3. Arrows indicate crack locations
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047148
EISBN: 978-1-62708-235-8
... for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides...
Abstract
A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089734
EISBN: 978-1-62708-235-8
... welds joining 200 mm (8 in.) diam 90 deg elbows and pipe to 200 mm (8 in.) diam welding-neck flanges. A flange-elbow-flange assembly and a flange-pipe assembly that had leaked were removed for examination. Investigation (visual inspection, hardness testing, chemical analysis, magnetic-particle testing...
Abstract
A system of carbon steel headers, handling superheated water of 188 deg C (370 deg F) at 2 MPa (300 psi) for automobile-tire curing presses, developed a number of leaks within about four months after two to three years of leak-free service. All the leaks were in shielded metal arc butt welds joining 200 mm (8 in.) diam 90 deg elbows and pipe to 200 mm (8 in.) diam welding-neck flanges. A flange-elbow-flange assembly and a flange-pipe assembly that had leaked were removed for examination. Investigation (visual inspection, hardness testing, chemical analysis, magnetic-particle testing, radiographic inspection, and 2% nital etched 1.7x views) showed varying IDs on the assemblies and supported the conclusions that the failures of the butt welds were the result of fatigue cracks caused by cyclic thermal stresses that initiated at stress-concentrating notches at the toes of the interior fillet welds on the surfaces of the flanges. Recommendations included using ultrasonic testing to identify the appropriate joints and then replacing them. Special attention to accuracy of fit-up in the replacement joints was also recommended to achieve smooth, notch-free contours on the interior surfaces.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001041
EISBN: 978-1-62708-214-3
... section and an internal fillet-welded diaphragm. Sections from each of the cross members were subjected to a complete analysis, including chemical analysis, magnetic particle testing, mechanical testing, scanning electron microscope/fractography, and metallography. The primary mode of failure was found...
Abstract
Four truck cross members intended for use in heavy-duty transport trucks were investigated. Two of the members had cracked on a prototype vehicle and two had been fatigue tested in the laboratory. The cross members were fabricated from SAE 950X plate and consisted of a formed channel section and an internal fillet-welded diaphragm. Sections from each of the cross members were subjected to a complete analysis, including chemical analysis, magnetic particle testing, mechanical testing, scanning electron microscope/fractography, and metallography. The primary mode of failure was found to be fatigue cracking that initiated at the toes of the fillet welds. Secondary fatigue cracking occurred at the torque rod mounting holes. Failure was attributed to cyclic stresses at the weld toes that exceeded the lowered fatigue strength at this location. A design change that eliminated the fillet welds alleviated the problem.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006758
EISBN: 978-1-62708-295-2
... metallography root cause analysis visual testing penetrant testing magnetic particle testing THE GOAL OF USING NONDESTRUCTIVE EVALUATION (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine...
Abstract
The goal of using nondestructive evaluation (NDE) in conjunction with failure analysis is to obtain the most comprehensive set of data in order to characterize the details of the damage and determine the factors that allowed the damage to occur. The NDE results can be used to determine optimal areas upon which to focus for sectioning and metallography in order to further investigate the condition of the component. This article provides information on the inspection method available for failure analysis, including standard methods such as visual testing, penetrant testing, and magnetic particle testing. It covers the effects of various factors on the properties of the part that may impact failure analysis, describes the characterization of damage modes and crack sizes, and finally discusses the processes involved in application of NDE results to failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern. Alignment Pulverizers Rolling contact Mechanical...
Abstract
A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto a cast iron hub. The wear and pitting pattern in the addendum area of the gear teeth indicated that either the gear or pinion was out of alignment. Beach marks observed on the fractured surface of the gear indicated that fatigue was the cause of the gear failure. Similar gears should be inspected carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern.
Image
Published: 01 December 1992
Fig. 2 View of the other striking surface of the hammer after magnetic particle testing. Note magnetic particle indications.
More
Image
Published: 01 December 2019
Fig. 3 Longitudinal primary and secondary cracks on the outside surface as revealed by magnetic particle testing
More
Image
Published: 30 August 2021
Fig. 15 Crater crack in carbon steel fillet weld termination as revealed under wet fluorescent magnetic-particle testing
More
Image
in Multiple Cracking of 2 In. Thick Boiler Drum From Thermal Shock
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 3 Showing crack which penetrated drum. (Both photographs taken after application of magnetic particle test).
More
Image
in Corrosion-Fatigue Cracking of Gray Iron Cylinder Inserts From a Water-Cooled Locomotive Diesel Engine
> ASM Failure Analysis Case Histories: Rail and Rolling Stock
Published: 01 June 2019
Fig. 1 Cracked cylinder insert collar. (a) Collar with cracks. 0.75×. (b) Section of the collar shown in (a); a magnetic-particle test on a white-painted section. 0.6×. Source: Ref 1
More
Image
in Hydrogen Embrittlement Cracking in a Batch of Steel Forgings
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Heat-treated end frame component after cadmium plating. Several tiny cracklike indications, primarily in the base fillet radial zones, were detected by magnetic-particle testing.
More
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
.) This macrocrack formed in the high-stress region near the weld because of the linkage of microcracks and fissures caused by high-temperature hydrogen attack. WFMT, wet fluorescent magnetic-particle testing; ID, inside diameter
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
... to remove any debris. Couplings Gears Magnetic particle testing Overheating Spalling 4130 UNS G41300 Fatigue fracture Figure 1 shows an integral coupling and gear, used on a turbine-driven main boiler-feed pump, that was removed from service after 1 year of operation because of excessive...
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
... to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure...
Abstract
Radial cracking occurred adjacent to 11 vanes in a 19-vane impeller operating in a chemical plant environment. The impeller vanes were fillet welded to both the disk and the cover Cracks were next to the fillet welds and near the cover outer diameter They generally did not extend to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure was attributed to stress-corrosion cracking caused by a corrosive atmosphere.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047856
EISBN: 978-1-62708-217-4
... vendors were notified about the excess size of the nonmetallic inclusions in the master connecting rods and a nondestructive-testing procedure for detection of large nonmetallic inclusions was established. Inspection Magnetic particle testing Radiography Stress concentration AMS 6412 4337 UNS...
Abstract
The master connecting rod of a reciprocating aircraft engine revealed cracks during routine inspection. The rods were forged from 4337 (AMS 6412) steel and heat treated to a specified hardness of 36 to 40 HRC. H-shaped cracks in the wall between the knuckle-pin flanges were revealed by visual examination. The cracks were originated as circumferential cracks and then propagated transversely into the bearing-bore wall. No inclusions in the master rod were detected by magnetic-particle and x-ray inspection. Three large inclusions lying approximately parallel to the grain direction and fatigue beach marks around two of the inclusions were revealed by macroscopic examination of the fracture surface. Large nonmetallic inclusions that consisted of heavy concentrations of aluminum oxide (Al2O3) were revealed by microscopic examination of a section through the fracture origin. The forging vendors were notified about the excess size of the nonmetallic inclusions in the master connecting rods and a nondestructive-testing procedure for detection of large nonmetallic inclusions was established.
1