1-20 of 87 Search Results for

magnesium alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
... Abstract A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0045909
EISBN: 978-1-62708-232-7
... Abstract A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
...Abstract Abstract Cracks were found on the wing leading edge of a test aircraft made from AZ31B magnesium alloy. Crack lengths were approximately 230 mm (9 in.) long on the left side and approximately 130 mm (5 in.) long on the right side. The cracks ran parallel to the leading edge. The 230-mm...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Magnesium alloys Aqueous chloride solutions Zirconium alloys Aqueous chloride solutions, organic liquids, I 2 at 350 °C (660 °F) This list is not exhaustive. As metals continue to be used in more extreme environments, discovery of new metal-environment combinations that produce SCC...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001284
EISBN: 978-1-62708-215-0
... Abstract Compound bow handle risers that had failed in service and during assembly along with an unassembled riser were submitted for analysis. The risers were die cast from magnesium-base alloy AM60A. Inspection of the failed risers and metallurgical investigations conducted on the stock riser...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
... was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001123
EISBN: 978-1-62708-214-3
..., and magnesium was different from the specified alloy. Scanning electron microscopy showed intergranular failure with enhanced aluminum and segregation of lead at grain boundaries. In this type of alloy, aluminum is used for strengthening through grain refinement, because aluminum would tend to segregate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
... testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive impurities, such as lead, tin, or cadmium. The primary cause of failure of the fractured nut was, therefore, an incorrect alloy...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... with time, at temperatures higher than room temperature. This observation is substantiated by Hatch [ 3 ], as he indicates that “the tensile properties of the aluminum–zinc–magnesium alloys in the as-cast (F temper) condition change rapidly during the first few weeks of room temperature aging, because...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
.... These failures occurred after only a few years in service for some and much longer for others. Some of these wheels were made from magnesium alloys; all the others were forged from 2014 aluminium alloy, heat treated to the T6 temper, anodized in sulphuric acid, and painted. Fig. 7 a: Catastrophic wheel...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
..., such as magnesium or zinc, which act as the more active member and will corrode preferentially while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... of a more active metal—for example, copper on aluminum or steel, silver on copper. This process is also known as cementation, especially with regard to aluminum alloys. The resulting metallic deposit provides cathodic sites for further galvanic corrosion of the more active metal. Magnesium...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of the fracture surface with the sectioning plane. Figure 2(a) shows a fracture profile generated from the fracture surface of a tensile test specimen of a metal-matrix composite (MMC) containing unidirectionally aligned alumina fibers in the matrix of an aluminum alloy. Figures 2(b) and 2(c) show...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
.... , Dietzel W. : Dry sliding wear behaviour of a conventional and recycled high pressure die cast magnesium alloys . Mater. Charact . 60 , 843 – 847 ( 2009 ) 10.1016/j.matchar.2009.01.014 12. Abedini M. , Ghasemi H.M. , Nili Ahmadabadi M. : Tribological behavior of NiTi alloy...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... stainless steels (sensitization) Embrittlement of molybdenum by oxygen, nitrogen, or carbon Embrittlement of copper by antimony Segregation of alloying elements, lithium and magnesium in aluminum-lithium alloys ( Ref 10 ) Embrittlement of copper alloys by bismuth (fire-cracking) ( Ref 11...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... solubility in the base material. Combinations of liquid metals that cause LMIE in base metals/alloys are as follows: Base alloy Liquid embrittlers Aluminum Hg, Ga, Zn, In, Na Steel Hg, Ga, Cd, Zn, In, Li Copper Hg, In, Li, Na Magnesium Zn, In Titanium Hg, Cd Silver Hg, Ga...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001124
EISBN: 978-1-62708-214-3
...Abstract Abstract Several wires in aluminum conductor cables fractured within 5 to 8 years of, service in Alaskan tundra. The cables were comprised of 19-wire strands; the wires were aluminum alloy 6201-T81. Visual and metallographic examinations of the cold-upset pressure weld joints...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
... in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
.... 10 ), EDX analyses identified the phases as being composed predominantly of magnesium and silicon (presumably Mg 2 Si) and iron and aluminum (Fe 3 A1). The structure otherwise appeared typical of properly solutioned and precipitation-hardened AMS 4126 aluminum-base alloy. Binocular and scanning...