Skip Nav Destination
Close Modal
By
Robert W. Hinton
By
Stephen D. Antolovich, Ashok Saxena
By
W.J. O'Donnell, J.M. Watson, W.B. Mallin, J.R. Kenrick
By
M. Lam
By
Moavinul Islam
By
R.B. Tait, D.P. Spencer, P.R. Fry, G.G. Garrett
By
Marina Banuta, Isabelle Tarquini
By
Carl J. Czajkowski
By
R.B. Tait, G.G. Garrett, D.P. Spencer
By
Y. C. Lin, F. V. Ellis
By
Robert L. Amaro, Stephen D. Antolovich, Ashok Saxena
By
Helmut Thielsch, Robert Smoske, Florence Cone, Jason Husband
Search Results for
low-temperature fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350
Search Results for low-temperature fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure Analyses of Six Cylinder Aircraft Engine Crankshafts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
... contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets...
Abstract
Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide precipitate was caused by overheat of the low sulfur steel, and an incipient melting of grain boundary junctions was caused by overheat of the ultra-low sulfur steel. The precipitates and incipient melting in these two failed crankshafts were observed during the examination. As expected, impact fractures from the low sulfur steel crankshaft contained planar dimpled facets along separated grain boundaries with a small spherical manganese sulfide precipitates within each dimple. In contrast, planar dimpled facets along separated grain boundaries of impact fractures from the ultra-low sulfur crankshaft steel contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets. Some of the facets were covered with nitrogen, boron, iron, and carbon film, while other facets were relatively free of such coverage. Results of experimental forging studies defined the times and temperatures required to produce incipient melting overheat and facets at grain boundary junctions of ultra-low sulfur AMS 6414 steels.
Book Chapter
Thermomechanical Fatigue: Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
.... At high temperatures, however, especially when there is a hold at the maximum strain, there is a continual coarsening that occurs, Fig. 5 , and the stress decreases continually. Fig. 5 Precipitate structure of René 80 cycled in strain-controlled low-cycle fatigue at 1254 K. Note the “globular...
Abstract
Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types of loading: in-phase and out-of-phase cycling. The article illustrates the ways in which damage can interact at high and low temperatures and the development of microstructurally based models in parametric form. It presents a case study of the prediction of residual life in a turbine casing of a ship through stress analysis and fracture mechanics analyses of the casing.
Book Chapter
Fatigue Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Book Chapter
Low Cycle Thermal Fatigue and Fracture of Reinforced Piping
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between...
Abstract
A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between the stiffening rings welded to the outside of the pipe and the pipe wall itself resulted in large radial and axial thermal stresses at the welds. Redundant tied down saddle supports in each segment of pipe between expansion joints restrained pipe arching due to circumferential temperature variations, producing large axial thermal bending stresses. Thermal cycling of the system initiated fatigue cracks at the stiffener rings. When the critical crack size was reached, fast fracture occurred. The system was redesigned by eliminating the redundant restraints and by modifying the stiffener rings to permit free radial thermal breathing of the pipe.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... m ) Safe-life, finite-life Local strain concept Low-cycle fatigue curve, ε a = f ( N i ) Cyclic stress-strain (σ a -ε a ) curve Damage tolerance Fracture mechanics concept Threshold value, Δ K th Crack growth diagram, da / dN = f (Δ K , R ) Fracture toughness, K Ic...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Book Chapter
Fracture of the Low Carbon Steel Tail Shaft on a Tanker Ship
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
... of the shaft. In the case of this shaft, a solution would have been to machine the core of the shaft to remove the brittle material or to use a tubular shaft. Forgings Shafts (power) Tankers (waterborne) Ultrasonic testing Low-carbon steel Fatigue fracture An LNG tanker experienced a fracture...
Abstract
An LNG tanker experienced a fracture of the solid tail shaft, which is a section of the main drive shaft. The tail shaft was made of a forged low-carbon steel. In spite of two ultrasonic inspections, a large defect the size of a football in the center of the shaft was missed. During heat treating following forging, it was surmised that the defect led to the propagation of an internal brittle crack, or clink. A fatigue crack propagated from this origin to the outer surface of the shaft after about a year of service. Finally a last ligament of a few square inches held the shaft together and broke, leading to the separation of the shaft. The cause of failure was fatigue crack initiation and crack growth under reverse bending cyclic stresses. There was no indication that misalignment existed because there was no indication of fretting at the bolt holes in the flange at the end of the shaft. In the case of this shaft, a solution would have been to machine the core of the shaft to remove the brittle material or to use a tubular shaft.
Book Chapter
Premature Failure of a Turbine Blade by Thermal Fatigue Fracture
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... Thermal fatigue fracture High-temperature corrosion and oxidation During disassembly of an engine that was to be modified, a fractured turbine blade was found. When the fracture was examined at low magnification, it was observed that a fatigue fracture had originated on the concave side...
Abstract
During disassembly of an engine that was to be modified, a fractured turbine blade was found. When the fracture was examined at low magnification, it was observed that a fatigue fracture had originated on the concave side of the leading edge and had progressed slightly more than halfway from the leading edge to the trailing edge on the concave surface before ultimate failure occurred in dynamic tension. Analysis (including visual inspection, SEM, and 250x/500x micrographic examination) supported the conclusions that the blades failed due to thermal fatigue. Recommendations included application of a protective coating to the blades, provided the coating was sufficiently ductile to avoid cracking during operation to prevent surface oxidation. Such a coating would also alleviate thermal differentials, provided the thermal conductivity of the coating exceeded that of the base metal. It was also determined that directionally solidified blades could minimize thermal fatigue cracking by eliminating intersection of grain boundaries with the surface. However, this improvement would be more costly than applying a protective coating.
Book Chapter
Thermal Fatigue Failure of Alloy UNS NO8800 Steam Superheating Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001346
EISBN: 978-1-62708-215-0
... Abstract Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations...
Abstract
Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks.
Book Chapter
A Fracture Mechanics Based Failure Analysis of a Cold Service Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... philosophy was consequently regarded as acceptable. Fracture mechanics Low temperature Pressure vessels 1ZEET Fatigue fracture An extended ‘fitness for purpose’ evaluation of cold service pressure vessels (CSPV) used in the oil from coal industry was undertaken in 1982 ( 1 ). This study made...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Book Chapter
Fatigue Failure of a Drive Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... Abstract The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... water, boiling water, low-quality steam, high-quality steam, and superheated steam. A temperature gradient between the tube wall and the fluid within the tube provides the driving force for heat transfer at any point. The design of a steam-generating unit balances the heat input from the combustion...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Book Chapter
Corrosion Fatigue Cracking of a Steam Generator Vessel From a Pressurized Water Reactor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001051
EISBN: 978-1-62708-214-3
... for these nozzles was low-cycle corrosion fatigue. The cracks observed in this investigation were quite similar in appearance to feedwater cracks. Constant-extension-rate tests performed on A508 C12 steel, which is also used in pressure vessels, in oxygenated water at higher temperatures have demonstrated...
Abstract
A pair of steam generators operating at a pressurized water reactor site were found to be leaking near a closure weld. The generators were the vertical U-tube type, constructed from ASTM A302 grade B steel. The shell material exhibited high hardness values prior to confirmatory heat treatment, indicating high residual stresses in the area of the weld. All cracks were transgranular and were associated with pits on the inside surfaces of the vessels. It was concluded that the cracking was caused by a low-cycle corrosion fatigue phenomenon, with cracks initiating at areas of localized corrosion and propagating by fatigue. The cause of the pitting/cracking was related to the unit's copper species in solution.
Book Chapter
Failure Analysis of a Large Centrifugal Blower
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001136
EISBN: 978-1-62708-229-7
... of a large industrial fan. The failure occurred from high cycle bending fatigue and appeared to have originated from a weld defect. The fracture toughness of the plate was relatively low, equivalent to K Q = 65 ± 9 MPa m over the operating temperature range of 0 to 400°C. By means...
Abstract
A fracture mechanics based failure analysis and life prediction of a large centrifugal fan made from low-carbon, medium-strength steel was undertaken following shortcomings in attempts to explain its fatigue life from start stop cycles alone. Measurements of the fracture toughness and flaw size at failure, coupled with quantitative SEM fractography using striation spacing methods, revealed that the cyclic stress amplitudes just prior to failure were much larger than expected, in this particular case. Subsequent improvements in fan design and fabrication have effectively alleviated the problem of slow, high cycle fatigue crack growth, at normal operating stresses in similar fans.
Book Chapter
Failure Analysis for a Carbon Steel Vaporizer Coil
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Book Chapter
Thermomechanical Fatigue—Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... in this article. While the term thermomechanical fatigue is also broadly applied to define testing procedures, generic environmental exposure (both high- and low-temperature exposure), and other aspects of material evolution, this article limits the application of the term thermomechanical fatigue...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Book Chapter
Failure Analysis of Superheater Outlet Header
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001526
EISBN: 978-1-62708-229-7
... in accordance with ASME Specification SA-335, which covers “Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service.” The steel is Grade P22, a low-alloy steel with 2.25% chromium and 1% molybdenum. The pipe has an outside diameter of 16 in. (40 cm) and a nominal wall thickness of 3.5 in. (9 cm...
Abstract
In Nov. 1998, the west superheater outlet header at an electricity generating plant began to leak steam. Subsequent investigation revealed the presence of a crack that extended for 360 deg around the full circumference of the header and through the full cross-sectional thickness. The subsequent inspection of this header and the east superheater header revealed the presence of extremely severe ligament cracking. They operated at 2400 psi (16.5 MPa) and a temperature of 540deg C (1005 deg F). Both were fabricated from seamless pipe produced in accordance with ASME Specification SA-335, and the steel was Grade P22, a 2.25Cr-1Mo alloy steel. Visual and metallurgical evaluations showed the cracking in the west superheater outlet header was caused by thermal fatigue. Tube holes had served as a preferential site for thermal fatigue cracking.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... Fatigue Failure versus Mechanical Fatigue Failure Unlike metallic materials, polymers have low heat conductivity; therefore, depending on the stress amplitude and the frequency of cyclic force application generated, heat cannot be dissipated quickly and may cause a temperature rise in the plastic...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... temperature, but the level of stresses for case B is low enough to get comparable results with properties at 200 °C. This shows that design of the mould shows no signs of early fatigue. Fig. 20 Fatigue life distribution in the mould; case A boundary conditions (numbers on the contour bar show number...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Book Chapter
Friction and Wear in a 24-Unit Speed-Increaser Gearbox
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were...
Abstract
In an industrial application, 24 speed-increaser gearboxes were used to transmit 258 kW (346 hp) and increase speed from 55 to 375 rev/min. The gears were parallel shaft, single helical, carburized, and ground. The splash lubrication system used a mineral oil without antiscuff additives with ISO 100 viscosity. After about 250 h of operation, two gearboxes failed by bending fatigue. Investigation showed the primary failure mode was scuffing, and the earlier bending fatigue failures were caused by dynamic loads generated by the worn gear teeth. Testing of a prototype gearbox showed that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were not provided with a coating or plating to ease running-in; and the gears were not run-in properly under reduced loads. The case suggests that such gear failures can be avoided if designers and operators recognize that the lubricant is an important component of a gearbox and appreciate that gear design requires the consideration and control of many interrelated factors.
Book Chapter
Creep and Stress Rupture Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... reactions creep deformation creep fatigue failure creep-rupture failure microstructural changes stress-rupture failure thermal fatigue HIGH-TEMPERATURE and stress are common operating conditions for various parts and equipment in a number of industries. The principal types of elevated-temperature...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
1