1-20 of 304 Search Results for

low-cycle fatigue

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between...
Image
Published: 01 June 2019
Fig. 9 Low cycle fatigue test data. More
Image
Published: 01 December 1992
Fig. 3 Probability of detection af bolt hole low-cycle fatigue cracks in compressor disks using liquid penetrant inspection. More
Image
Published: 15 January 2021
Fig. 9 Example of low-cycle fatigue curve for a die-cast aluminum alloy More
Image
Published: 15 May 2022
Fig. 5 Fracture surface due to low cycle fatigue from polyethylene terephthalate (PET) toothbrush More
Image
Published: 01 December 2019
Fig. 6 Close-up view of regions of propagation under low-cycle fatigue mechanisms. Note that the beach marks appear with more textures and pronounced than those shown in Fig. 5 More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048361
EISBN: 978-1-62708-234-1
... that failed by low-cycle thermal fatigue. Top: original design. Inset shows the locations of thermocouples used in analyzing thermal gradients and the typical temperatures at each thermocouple location. Bottom: the analysis resulted in an improved design. Dimensions given in inches Investigation...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090181
EISBN: 978-1-62708-229-7
... Abstract Cracking in gas turbine blades was found to initiate from a mechanism of low-cycle fatigue (LCF). LCF is induced during thermal loading cycles in gas turbines. However, metallography of two cracked blades revealed a change in microstructure at as-cast surfaces for depths up to 0.41 mm...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048596
EISBN: 978-1-62708-221-1
.... Hardenability Low cycle fatigue 1045 UNS G10450 Heat treating-related failures Fatigue fracture When a farm tractor is to be used on sticky or wet soils, it is common practice to attach dual driving wheels to the rear axles of the tractor by using fittings such as that shown in Fig. 1 . SAE, grade 5...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001296
EISBN: 978-1-62708-215-0
... that the part failed by low cycle fatigue. The fracture was brittle in nature and had originated at a severely eroded zone of craters in a hard, deep white layer that was the result of remelting during electrodischarge machining. It was recommended that the remaining parts be inspected using a stereoscopic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001001
EISBN: 978-1-62708-229-7
..., caused by the periodic return of condensate along the long connecting line (some 9 m long). Propagation of the cracks was due to thermal cycling, together with periodic pressure cycles, producing growth by low cycle fatigue. This was aided by corrosion within the cracks and by the wedging action caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001506
EISBN: 978-1-62708-217-4
.... A bracket which supports the in-line fuel flow transducer also was found broken. Examination of the elbow fracture revealed characteristics of low-cycle fatigue failure. Examination of the support bracket fractures revealed a high-cycle mode of fatigue failure, with the primary fatigue extending along...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051866
EISBN: 978-1-62708-228-0
... occurred when the tubing was idle and fluids accumulated at the bottom of the tubing wraps. The coiled tubing was concluded to have failed prematurely due to low-cycle fatigue initiated at corrosion pitting sites. Corrosive attack on the coiled tubing was recommended to be reduced by completely removing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001593
EISBN: 978-1-62708-234-1
... features of alternating cracking and arrest cycles, consistent with low cycle fatigue, as shown in Fig. 2 . The final fracture zone showed features associated with brittle overload, as evidenced by the significant concentration of hackle marks, and exhibited limited ductility in the form of isolated...
Image
Published: 15 January 2021
Fig. 3 S - N curve for cruciform metal-active-gas-welded joints (structural steel S355, ASTM A572 grade 5). LCF, low-cycle fatigue; HCF, high-cycle fatigue; P F , probability of failure More
Image
Published: 15 January 2021
Fig. 9 Precipitate structure of René 80 cycled in strain-controlled low-cycle fatigue at 1254 K. Note the globular appearance and coarsening of the precipitates and the dislocation networks around the precipitates. The small precipitates have been consumed by the growth of the large ones More
Image
Published: 01 January 2002
Fig. 5 Precipitate structure of René 80 cycled in strain-controlled low-cycle fatigue at 1254 K. Note the “globular” appearance and coarsening of the precipitates and the dislocation networks around the precipitates. The small precipitates have been consumed by growth of the large ones. Source More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used...
Image
Published: 01 January 2002
Fig. 20 Beach marks on (a) quenched-and-tempered alloy steel pin fractured in low-cycle fatigue ( Ref 4 ), and on (b) maraging steel stud fractured in the laboratory by stress-corrosion cracking under steady load ( Ref 16 ). The presence of beach marks is indicative of progressive cracking More