1-20 of 512 Search Results for

low-carbon steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048819
EISBN: 978-1-62708-233-4
... of ASTM A516, grade 70, low-carbon steel plate. A steel angle had been formed into a ring was continuously welded to the inside wall of the vessel. The groove formed by the junction of the lower tray-support weld and the top part of the weld around the nozzle was found to have a crack. Pits and scale near...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
... Abstract The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... Abstract Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001909
EISBN: 978-1-62708-235-8
... Abstract Welded low-carbon steel bomb fins were rejected because of poor weld practice. Visual and metallographic examination revealed that the resistance plug welds that attach the outer skin to the inner spar displayed inadequate weld penetration. Recommended changes to the resistance welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
... Abstract An LNG tanker experienced a fracture of the solid tail shaft, which is a section of the main drive shaft. The tail shaft was made of a forged low-carbon steel. In spite of two ultrasonic inspections, a large defect the size of a football in the center of the shaft was missed. During...
Image
Published: 01 January 2002
Fig. 11 SEM view of the fracture surface of a low-carbon steel specimen broken in tension, showing ductile dimples, local quasicleavage, and manganese sulfide inclusions More
Image
Published: 01 January 2002
Fig. 4 Plot from EDS scan of low carbon steel sheet at (a) 15 keV and (b) 5 keV. The high energy iron peaks (above 5 keV) are missing in the spectrum in (b) produced from 5 keV electrons. The carbon peak is also higher in Fig. 4(b), suggesting a trace of carbon, probably from oil More
Image
Published: 01 January 2002
Fig. 4 Light micrograph of the path of a fatigue crack through a low-carbon steel specimen. Etched with 2% nital More
Image
Published: 01 January 2002
Fig. 12 A cracked cementite particle in a cold-rolled low-carbon steel (approximately 0.1% C). A high magnification view of a cracked cementite particle showing multiple cracks and shattering. Courtesy of Richard Holman, University of Tennessee More
Image
Published: 01 January 2002
Fig. 30 Lamellar tear beneath a T-joint weld that joined two low-carbon steel plates. (a) Fractograph of lamellar tear showing separation that has followed flattened inclusions. Approximately 0.3×. (b) Section through fracture (top), which occurred in the coarse-grain reaustenitized region More
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Image
Published: 01 January 2002
Fig. 1 Comparison of the conventional stress-strain behavior of a low-carbon steel, a strain-hardening material, and the idealized material assumed in limit analysis. All have the same yield strength. More
Image
Published: 01 January 2002
Fig. 3 Low-carbon steel tee fitting in a line leading to a natural-gas dryer that failed from hydrogen sulfide corrosion. (a) Arrangement of piping showing point of leakage in the tee fitting. (b) Inner surface of the tee fitting showing corrosion deposit and area of complete penetration More
Image
Published: 01 January 2002
Fig. 1 A specimen from a low-carbon steel nipple showing fissuring at grain boundaries (top) caused by hydrogen attack. 80× More
Image
Published: 01 January 2002
Fig. 57 Quasi-cleavage fracture in a low-carbon steel tested at −196 °C (−320 °F). (a) Tensile specimen. (b) Torsion (mode III) specimen. Etch pitting indicated that the fracture plane was {100}. Source: Ref 72 More
Image
Published: 01 June 2019
Fig. 1 Low-carbon steel tee fitting in a line leading to a natural-gas dryer that failed from hydrogen sulfide corrosion. (a) Arrangement of piping showing point of leakage in the tee fitting. (b) Inner surface of the tee fitting showing corrosion deposit and area of complete penetration More
Image
Published: 01 June 2019
Fig. 1 Orchard heater of galvanized low-carbon steel that broke in a brittle manner because of an iron-zinc intermetallic compound along the grain boundaries. Dimensions given in inches. View A-A: micrograph of an etched section that shows the microstructure of the steel sheet. 400x More
Image
Published: 01 June 2019
Fig. 1 Fatigue-fractured low-carbon steel retainer (a) for the pivot pins of a flyweight assembly (b) used in an aircraft-engine governor. Dimensions given in inches More
Image
Published: 01 June 2019
Fig. 1 The inside surface of the welded low-carbon steel storage tank shows evidence of general corrosion with severe discoloration at the weld. More