Skip Nav Destination
Close Modal
By
Iván Uribe Pérez, Tito Luiz da Silveira, Tito Fernando da Silveira, Heloisa Cunha Furtado
Search Results for
low-carbon metallic matrix
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 184 Search Results for
low-carbon metallic matrix
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048289
EISBN: 978-1-62708-234-1
... to form in low-carbon steel, the metal must be heated above 727 °C (1340 °F) and rapidly quenched. The microstructure of the ruptured tube indicated that this temperature was exceeded in the general area of failure and was greatly exceeded at the rupture, where a temperature of at least 870 ° C (1600 °F...
Abstract
The center portions of two adjacent low-carbon steel boiler tubes (made to ASME SA-192 specifications) ruptured during a start-up period after seven months in service. It was indicated by reports that there had been sufficient water in the boiler two hours before start-up. The microstructure near the rupture edge was revealed by metallographic examination to consist of ferrite and acicular martensite or bainite. The microstructure and the observed lack of cold work indicated a temperature above the transformation temperature of 727 deg C had been reached. Swelling of the tubes was disclosed by the wall thickness and OD of the tubing. The tubes were concluded to have failed due to rapid overheating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0045909
EISBN: 978-1-62708-232-7
... Abstract A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished...
Abstract
A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished and etched and were found to be composed of ferrite and pearlite mixtures, as would be expected. However, the sample taken from a location about 75 mm (3 in.) from the hole contained a cluster of unusually large inclusions. By removing the beryllium window from in front of the detector, EPMA spectra were obtained from the inclusions and from the steel matrix. The inclusion spectrum contained primarily iron and oxygen, whereas the matrix spectrum contained primarily iron. X-ray maps were made to show the distribution of iron and oxygen. These results indicated that the inclusions were iron oxide. A similar inclusion at the failure site in the melting pot may have reacted violently with the molten magnesium, causing the leak.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001223
EISBN: 978-1-62708-233-4
... been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10...
Abstract
The corner of a welded sheet construction made from austenitic corrosion-resistant chromium-nickel steel showed corrosive attack of the outer sheet. This attack was most severe at the points subjected to the greatest heat during welding. Particularly large amounts of weld metal had been applied. Microscopic examination showed grain disintegration was promoted by the thickness of the weld bead and the amount of heat required to produce it. If nonstabilized austenitic sheet is to be used in the future, one of the particularly low-carbon steels, X2 CrNi 18 9 or X2 CrNiMo 18 10, is recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001165
EISBN: 978-1-62708-234-1
... Abstract After operating for six months, a pump impeller (of nickel-containing cast iron) showed considerable corrosion. Cross sections showed substantial penetration of the wall thickness without loss of material. The observed supercooled structure implied low strength but would not affect...
Abstract
After operating for six months, a pump impeller (of nickel-containing cast iron) showed considerable corrosion. Cross sections showed substantial penetration of the wall thickness without loss of material. The observed supercooled structure implied low strength but would not affect corrosion resistance. Etching of the core structure showed a selective form of cast iron corrosion (spongiosis or graphitic corrosion) which lowered the strength of the cast iron enough that a knife could scrape off a black powder (10.85% C, 1.8% S, 1.45% P). Analysis showed that some of the “sulfate” found in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... the tip of a corroded region. The EDS analysis from the area noted revealed a prominent S and O peak. Fig. 11 shows the tip of another corroded region, and the EDS spectra revealed high S and Cr and low Co in the corrosion product (area B). Some O, Al, Si and Cl were also present. The matrix analysis...
Abstract
A microstructural analysis has been made of a burner nozzle removed from service in a coal gasification plant. The nozzle was a casting of a Co-29wt%Cr-19wt%Fe alloy. Extensive hot corrosion had occurred on the surface. There was penetration along grain boundaries, and corrosion products in these regions were particularly rich in S, and also contained Al, Si, O, and Cl. The grain boundaries contained Cr-rich particles which were probably Cr23-C6 type carbides. In the matrix, corrosion occurred between the Widmanstatten plates. Particles were found between these plates, most of which were rich in Cr and O, and probably were Cr2-O3 oxides. Other matrix particles were found which were rich in Al, O, and S. The corrosion was related to these grain boundary and matrix particles, which either produced a Cr-depleted zone around them or were themselves attacked.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... in manganese, chromium and carbon and rich in nickel and iron ( Fig. 3 ). Similar depleted zones have been observed ( 11 , 12 , 13 ) in low-carbon 20%Cr austenitic steels and explained as the result of non-protective oxide film and low oxidation front velocities. Fig. 3 Line profiles for C, Cr, Mn...
Abstract
Microstructural examinations on transverse cross sections of a steam reformer tube, showed the presence of large macrovoids elongated in the radial direction and emanating from the internal surface of the tube. The macrovoids were located at the interdendritic regions, and were partially filled by a Mn-Fe bearing chromium oxide film. The areas adjacent to the oxide film were chemically depleted in C, Cr and Mn and rich in Fe and Ni. Associated with this depletion were a large concentration of microvoids. It was suggested that the dissolution of carbides in areas surrounding the macrovoids and the concentration of stresses at their tips, caused extensive localized plastic deformation which led to the formation of microvoids and subsequently to the spalling of the oxide film. The non-protective character of the film induced a progressive deterioration of the grain boundaries properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001534
EISBN: 978-1-62708-220-4
... was in the range of 210 to 230 HV. 3.6 Impact Testing To evaluate the low-temperature impact properties of the weld with respect to the base metal, subsize Charpy V-notch impact specimens (55 by 10 by 5 mm) were taken from the failed component. Dimensional details and the orientation (for specimens taken...
Abstract
A detailed failure analysis was conducted on an ammonia refrigerant condenser tube component that failed catastrophically during its initial hours of operation. Evidence collected clearly demonstrated that the weld between a pipe and a dished end contained a sharp unfused region at its root (lack of penetration). Component failure had started from this weld defect. The hydrogen absorbed during welding facilitated crack initiation from this weld defect during storage of the component after welding. Poor weld toughness at the low operating temperature facilitated crack growth during startup, culminating in catastrophic failure as soon as the crack exceeded critical length.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
..., the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures...
Abstract
Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures. In general, the more randomly distributed the nodules, the less effect they have on structural integrity. In the cases examined, the nodules were found to be organized in planar arrays, indicating they might have an effect on material properties. Closer inspection, however, revealed that the magnitude of the effect depends on the relative orientation of the planar arrangement and principle tensile stress. For normal orientation, the effect of embrittlement tends to be most severe. Conversely, when the orientation is parallel, the nodules have little or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... . The EDS spectra of these carbides do not reveal carbon because the x-rays emitted from this low atomic number (Z = 6) element are beyond the detection capability of the detector. The occurrence of FeKα peaks at 6.403 KeV in Fig. 11 and 9 are due to matrix excitation, possibly caused by small...
Abstract
Although a precise understanding of roll failure genesis is complex, the microstructure of a broken roll can often unravel intrinsic deficiencies in material quality responsible for its failure. This is especially relevant in circumstances when, even under a similar mill-operating environment, the failure involves a particular roll or a specific batch of rolls. This paper provides a microstructural insight into the cause of premature breakage of a second-intermediate Sendzimir mill drive roll used at a stainless steel sheet rolling plant under the Steel Authority of India Limited. Microstructural issues influencing roll quality, such as characteristics of carbides, tempered martensite, retained austenite, etc., have been extensively studied through optical and scanning electron microscopy, electron-probe microanalysis, image analysis, and x-ray diffractometry. These are discussed to elucidate specific microstructural inadequacies that accentuated the failure. The study reveals that even through retained austenite content is low (6.29 vol%) and martensite is non-acicular, the roll breakage is a consequence of intergranular cracking caused by improper carbide morphology and distribution.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... for the presence of copper and nickel, which are the result of the corrosion of copper-nickel water circuit tubing. The low pH excursion in the boiler water circuit experienced by this boiler was probably responsible for the hydrogen damage found in the rear wall tube section. Corrosive attack and hydrogen...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
.... , The effects of sulfur on the notch toughness of heat-treated steels . Trans. Metall. Soc. AIME 215 ( 10 ), 745 – 753 ( 1959 ) Selected References Selected References • Bramfitt B.L. and Lawrence S.J. , Metallography and Microstructures of Carbon and Low-Alloy Steels...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... images of dimple-rupture fractures. (a) Fracture of low-alloy medium-carbon steel bolt (SAE grade 5). Original magnification: 1750×. (b) Equiaxed tensile dimples originating around the graphite nodules of ASTM 60-45-10 ductile iron. Original magnification: 350×. (c) Parabolic shear dimples in cast Ti-6Al...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
.... Dolomitic refractories are made of burnt natural dolomite, usually low in iron oxide (0.3%) and alumina (0.2%). As for magnesia, very efficient doloma-carbon bricks have been developed. As shown in Table 1 , doloma performance may match that of magnesia for specific applications. High-Alumina...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... the longitudinal axis, showing cracks emanating from both the inner and outer diameters. Unetched. 15×. Abstract Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both...
Abstract
Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other had not fractured, but exhibited circumferential cracks on the surface of the central zone. Visual surface examination and metallographic and chemical analyses were performed on the specimens. Cracking was attributed primarily to poor heat treatment, resulting in a brittle grain-boundary network of cementite, and to a design that had a raised central section of the inner diameter whose fillets were locations of high stress concentration. Rough machining of the inner diameter and an excessively deep case also contributed to failure. A double type of heat treatment after carburizing and change of the design to eliminate the raised central section were recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... by cleavage in second-phase (silicon) particles and other second phases. Fig. 1 SEM images of dimple-rupture fractures. (a) Fracture of low-alloy medium-carbon steel bolt (SAE grade 5). 1750×. (b) Equiaxed tensile dimples originating around the graphite nodules of ASTM 60-45-10 ductile iron. 350×. (c...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
....2018.06.010 40. Din I.U. , Panier S. , Hao P. , Franz G. , Bijwe J. , and Hui L. , Finite Element Modeling of Indentation and Adhesive Wear in Sliding of Carbon Fiber Reinforced Thermoplastic Polymer Against Metallic Counterpart . Tribology International , Vol 135...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... divorcement in low-carbon steels Grain-boundary hypereutecoid cementite in carburized or hypereutectoid steels Iron nitride grain-boundary films in nitrided steels Temper embrittlement in heat treated steels due to segregation of phosphorus, antimony, arsenic, or tin Embrittlement of copper due...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... in a matrix of ferrite microstructure. Cutting tool life increased and short broken chips formed while machining the dual-phase low-carbon piston cups ( Ref 6 ). Often during dry machining of gray cast iron, graphite particles are pulled from the matrix microstructure. These graphite particles leave...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... to eutectoid divorcement in low-carbon steels Grain-boundary hypereutecoid cementite in carburized or hypereutectoid steels Iron nitride grain-boundary films in nitrided steels Temper embrittlement in heat treated steels due to segregation of phosphorus, antimony, arsenic, or tin Embrittlement...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046915
EISBN: 978-1-62708-232-7
... constituents—mainly carbon and oxygen and their reaction products—account for the observed carburization and oxidation. Conclusions Thinning of the pan walls at the surface of the molten lead resulted from using coke of high moisture content and from the low fluctuating coke level. In comparison...
Abstract
Severely reduced wall thickness was encountered at the liquid line of a lead-bath pan that was used in a continuous strip or wire oil-tempering unit. Replacement of the pan was necessary after six months of service. The pan, 6.9 m (22.5 ft) long, 0.6 m (2 ft) wide, and 38 cm (15 in.) deep with a 2.5-cm (1-in.) wall thickness, was a type 309 stainless steel weldment. Operating temperatures of the lead bath in the pan ranged from 805 deg C (1480 deg F) at the entry end to 845 deg C (1550 deg F) at the exit end. Analysis (visual inspection. metallographic analysis, moisture testing, and etched micrographs using Murakami's reagent) supported the conclusions that thinning of the pan walls at the surface of the molten lead resulted from using coke of high moisture content and from the low fluctuating coke level. Recommendations included reducing the supply of oxygen attacking the grain boundaries and the hydrogen that readily promoted decarburization with the use of dry (2 to 3% moisture content) coke. Maintaining a thick layer of coke over the entire surface of molten lead in the pan would exclude atmospheric oxygen from the grain boundaries.
1