1-20 of 634 Search Results for

low-alloy steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... Abstract The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
..., the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047939
EISBN: 978-1-62708-225-9
... Abstract Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089530
EISBN: 978-1-62708-219-8
... Abstract A sand-cast steel eye connector used to link together two 54,430 kg capacity floating-bridge pontoons failed prematurely in service. The pontoons were coupled by upper and lower eye and clevis connectors that were pinned together. The eye connector was found to be cast from low-alloy...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
Image
Published: 01 June 2019
Fig. 1 Highway-truck equalizer beam, sand cast from low-alloy steel, that fractured because of mechanical cracking. (a) Fracture surface; detail A shows increments (regions B, C, D, and E) in which crack propagation occurred sequentially. Dimensions given in inches. (b) Micrograph More
Image
Published: 01 June 2019
Fig. 1 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture. More
Image
Published: 01 June 2019
Fig. 1 Sand-cast low-alloy steel eye connector from a floating-bridge pontoon that broke under static tensile loading. (a) Schematic illustration of pontoon bridge and enlarged view of eye and clevis connectors showing location of fracture in eye connector. (b) A fracture surface of the eye More
Image
Published: 01 June 2019
Fig. 1 Fracture surface of cast 10-cm (4-in.) high-strength low-alloy steel chain link that failed because of internal hydrogen-assisted cracking. Note hydrogen flake. 0.25× More
Image
Published: 01 June 2019
Fig. 1 Low-alloy steel conveyor pipe that cracked at fillet welds securing a carbon steel flange because of poor fit-up. Dimensions given in inches More
Image
Published: 01 June 2019
Fig. 1 Section through weld in a roadarm (a weldment of low-alloy steel castings). The roadarm fractured in the HAZ because of high carbon-equivalent content. Fracture surface is at arrow. 0.8× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
... Abstract Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired hardenability...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047570
EISBN: 978-1-62708-221-1
... Abstract A pipe in a chip conveyor cracked at the toe of an exterior fillet weld connecting a flange to the pipe. The chip conveyor consisted of several spool sections. Each section was made up of a length of low-alloy steel pipe and two flanges, which were welded to each end. The composition...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... Abstract A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047479
EISBN: 978-1-62708-221-1
... Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047423
EISBN: 978-1-62708-236-5
... Abstract A large shackle used in operating a dragline bucket failed in service. The shackle was made of a cast low-alloy steel (similar to AISI 4320) heat treated to a hardness of 415 BN. The shackle failed by fracturing through the load-bearing region. Examination of the fracture surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047474
EISBN: 978-1-62708-221-1
... Abstract A 10-cm (4-in.) chain link used in operating a large dragline bucket failed after several weeks in service. The link was made of cast low-alloy steel (similar to ASTM A487, class 10Q) that had been normalized, hardened, and tempered to give a yield strength of approximately 1034 MPa...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power...