1-20 of 342 Search Results for

low-alloy carbon steel

Sort by
Image
Published: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2× More
Image
Published: 30 August 2021
Fig. 47 Low-alloy steel conveyor pipe that cracked at fillet weld securing a carbon steel flange because of poor fit-up. Dimensions given in inches More
Image
Published: 01 January 2002
Fig. 19 Strength-hardness correlation for carbon and low-alloy steels. Source: Ref 14 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
...-alloy carbon steel spheroidization SEM backscattered electron analysis microstructural transformation T12 (chromium-molybdenum low-alloy carbon steel) Introduction Low-alloy CrMo carbon steels, such as T12, T22, and T23, are widely used as high-temperature economiser tubes (e.g., waterwall...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
.... Analysis revealed that the alloy content of the steel was adequate for the desired hardenability but that the specified carbon content (0.29%) was too low. Conclusions The low specified carbon content resulted in unacceptably low hardness. Because hardness largely controls wear rate, an early...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
... Abstract Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... Abstract A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
...-type shock-resistant steel, although sometimes a less expensive material can be substituted for the material specified. For example, the same hardness can be achieved in a drastically quenched plain carbon steel, tempered at a low temperature, as in a higher-carbon alloy steel that was tempered...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... was formed. This zone also contained sufficient chromium, silicon, and molybdenum from the filler metal, and carbon from the base metal, to approximate a highly hardenable low alloy steel upon fast solidification and cooling. The base metal had a D I of 10.2 mm (0.4 in.), and the average weld D I...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... Abstract After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
... in.). These tubes were steam bearing tubes for a 6.2 MPa (900 psig) boiler. Pertinent Specifications Tube 1 and the failed end of tube 2 were fabricated from low-carbon steel consistent with ASTM A192 specifications. The non-failed end of tube 2 was fabricated from ASTM A123 Grade T22 seamless ferritic alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... Abstract Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its...
Image
Published: 01 January 2002
Fig. 24 Temperature-time plot of pearlite decomposition by the competing mechanisms of spheroidization and graphitization in carbon and low-alloy steels. The curve for spheroidization is for conversion of one-half of the carbon in 0.15% C steel to spheroidal carbides ( Ref 8 , 9 ). The curve More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... to the lower creep strength in the low carbon alloy. The nickel content of the wire was at the high end of the Type 304 stainless steel specification. This high nickel content improved the drawing capability so that it was similar to that of Type 305 stainless steel. Type 305 stainless steel generally has...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001331
EISBN: 978-1-62708-215-0
... surface. Etched. 134× Chemical Analysis/Identification The results of wet chemical analysis are presented in Table 1 . The pipe material was AISI 1020 carbon steel, not P22 low-alloy steel as specified. AISI 1020 steel is not as resistant to high-temperature steam as P22; consequently...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium. aluminum alloys austenitic stainless steel carbon...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001784
EISBN: 978-1-62708-241-9
... unsintered particles low carbon steel longitudinal crack SEM/EDS analysis chemical composition low carbon steel (low carbon steel, general) Introduction Properly heat treated alloy steels can make durable wrench sockets. Materials selection of such a part is well established since the only...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... images of dimple-rupture fractures. (a) Fracture of low-alloy medium-carbon steel bolt (SAE grade 5). Original magnification: 1750×. (b) Equiaxed tensile dimples originating around the graphite nodules of ASTM 60-45-10 ductile iron. Original magnification: 350×. (c) Parabolic shear dimples in cast Ti-6Al...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047570
EISBN: 978-1-62708-221-1
... conveyor consisted of several spool sections. Each section was made up of a length of 560 mm (22 1 16 in.) OD by 546 mm (21 1 2 in.) ID low-alloy steel pipe and two 713 mm (28 1 16 in.) OD by 562 mm (22 9 64 = in.) ID flanges of 13 mm ( 1 2 in.) thick low-carbon steel...