1-20 of 62 Search Results for

liquid impingement erosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 8 Processes by which a material is damaged by liquid impingement erosion. (a) Solid surface showing initial impact of a drop of liquid that produces circumferential cracks in the area of impact or produces shallow craters in very ductile materials. (b) High-velocity radial flow of liquid More
Image
Published: 15 January 2021
Fig. 8 Processes by which a material is damaged by liquid impingement erosion. (a) Solid surface showing initial impact of a drop of liquid that produces circumferential cracks in the area of impact or produces shallow craters in very ductile materials. (b) High-velocity radial flow of liquid More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... Abstract Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... Abstract Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles ( Ref 1 ). Erosion is a rather broad term and can be further classified into a number of more specific terms...
Image
Published: 01 January 2002
Fig. 9 Two portions of a modified type 403 stainless steel steam turbine blade damaged by liquid impingement erosion. The portion at left was protected by a shield of 1 mm (0.04 in.) thick rolled Stellite 6B brazed onto the leading edge of the blade; the portion at right was unprotected More
Image
Published: 15 January 2021
Fig. 9 Two portions of a modified type 403 stainless steel steam turbine blade damaged by liquid impingement erosion. The portion at left was protected by a 1 mm (0.04 in.) thick shield made of rolled Stellite 6B brazed onto the leading edge of the blade; the portion at right was unprotected More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
...-impact erosion is caused by continued impingement of liquid droplets, usually water moving at high relative velocities (>50 m/s, or >164 ft/s). Because water droplets cannot move at high velocities without breaking up, the practical problem of liquid-droplet erosion arises when a solid body moves...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
.... After the microjet impact, liquid flow on the solid surface could also have some effect on material removal. This is the reason why some surface-crack formation observed could not be attributed only to microjet impact on the solid surface ( Ref 2 , 3 , 4 , 5 , 6 , 7 , 8 ). Cavitation Erosion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock...
Image
Published: 15 January 2021
Fig. 10 Wet steam experimental apparatus for liquid droplet impingement (LDI) erosion test More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... of scale break loose and are carried into the turbine by the steam. The scale is normally a fine powder by the time it reaches the turbine where it impinges on the turbine blades causing erosion [ 14 , 15 ]. The pits created by solid particles have more irregular edges than those created by liquid...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis. boilers corrosion embrittlement erosion failure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... exposing more base material to corrosive action. An example of this type of process is the erosion-corrosion of steam turbines. Other systems may involve the dissolution of the protective oxide layer, because of a continual flow of liquid past the surface. Cavitation is also a problem where the high-speed...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry. Abrasive erosion Catastrophic wear Impingement erosion Rotors Slurry pipelines Ductile iron Corrosive wear Erosive wear Background...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... by the simultaneous action of the other. Erosion-corrosion occurs when a target surface is subject to impingement of solid particles in a flowing corrosive liquid or slurry ( Ref 4 , 5 ). This is a common surface failure mode for components, such as pumps, pipelines, valves, and flotation cells, in facilities...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... from coal-based thermal power plants. With coal as the fuel, there are two distinct technologies used for power generation: subcritical and supercritical. Supercritical is that state of a substance in which there is no clear distinction between the liquid and gaseous phase (i.e., it behaves...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... < 0.3; tribo-oxidative wear in dry conditions Abrasive wear by hard particles Fracture/deformation produced by hard, sharp particles or protuberances Solid-particle erosion Fracture/deformation from particle indents Cavitation erosion Fracture produced by impinging liquid jets Slurry...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... Classification of Wear” in this article. Sometimes, erosive wear is classified as a third category. Erosive-type wear includes phenomena from liquid impingement and cavitation wear, as discussed in other articles in this Section on “Wear Failures.” Another special type of wear is contact fatigue, where cyclic...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... and prevention of several types of failures in which corrosion is a contributing factor. These articles include “ Stress-Corrosion Cracking ,” “ Liquid Metal and Solid Metal Induced Embrittlement ,” “ Hydrogen Damage and Embrittlement ,” “ Corrosive Wear Failures ,” “ Biological Corrosion Failures ,” and “ High...