Skip Nav Destination
Close Modal
Search Results for
laser powder-bed fusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7 Search Results for
laser powder-bed fusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 10 Microstructure of laser powder-bed fusion build showing distinct nonisotropic weld patterns
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 17 Summary of stress ( S ) versus cycles to failure ( N ) ( S - N ) data for laser powder-bed fusion (PBF), electron beam melting (EBM) PBF, and directed-energy deposition (DED) wire at R = 0.1. Metallic Materials Properties Development and Standardization (MMPDS) data for cast
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... sintering in the 1980s. One is the AM process of powder-bed fusion, where powder is spread over a build area in a thin layer and subsequently fused locally by an energy source, such as a laser, electron beam, or light source. Another type of AM process developed the 1990s is directed-energy deposition...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 16 Materials property space for room-temperature yield strength versus elongation of additively manufactured (AM) alloys and conventionally manufactured alloys (dashed lines). (a) Steels, nickel alloys, aluminum alloys, TiAl, and CoCrMo. (b) Ti-6Al-4V alloys (powder-bed fusion, or PBF
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 1 Power ( P ) and velocity ( V ) in metal additive manufacturing processes by powder-bed fusion, wire-feed electron beam, and directed-energy (laser) deposition processes. Source: Ref 5
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness...
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4