Skip Nav Destination
Close Modal
Search Results for
large-diameter pipes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 167 Search Results for
large-diameter pipes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001701
EISBN: 978-1-62708-219-8
... the tubercles was significant, with the threaded areas exhibiting the greatest metal loss. The inner diametral surfaces of the large diameter pipes (2–1/2 inch or 6.35 cms) were generally free of tuberculation, but the surfaces were covered with thick adherent reddish brown scale. Pit depths beneath the scale...
Abstract
A closed-loop hot water heating system at a museum in South Carolina was the subject of failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or seamless). The supply and return lines were made of the same materials. The fittings were mechanically threaded assemblies. Temperatures ranged from 150 to 155 deg F (65.6 to 68.3 deg C). Leaks in the system had reportedly initiated immediately after the building had been placed in service. The cause of corrosion inside the steel pipes was attributed to tuberculation caused by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001149
EISBN: 978-1-62708-232-7
... Abstract A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths...
Abstract
A large diameter steel pipe reinforced by stiffening rings with saddle supports was subjected to thermal cycling as the system was started up, operated, and shut down. The pipe functioned as an emission control exhaust duct from a furnace and was designed originally using lengths of rolled and welded COR-TEN steel plate butt welded together on site. The pipe sustained local buckling and cracking, then fractured during the first five months of operation. Failure was due to low cycle fatigue and fast fracture caused by differential thermal expansion stresses. Thermal lag between the stiffening rings welded to the outside of the pipe and the pipe wall itself resulted in large radial and axial thermal stresses at the welds. Redundant tied down saddle supports in each segment of pipe between expansion joints restrained pipe arching due to circumferential temperature variations, producing large axial thermal bending stresses. Thermal cycling of the system initiated fatigue cracks at the stiffener rings. When the critical crack size was reached, fast fracture occurred. The system was redesigned by eliminating the redundant restraints and by modifying the stiffener rings to permit free radial thermal breathing of the pipe.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... Abstract Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented...
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0065825
EISBN: 978-1-62708-228-0
... in Large-Diameter Pipe , J. Iron Steel Inst. , Vol 211 , May 1973 , p 369 – 373 Selected References Selected References • Eiber R.J. , Failures of Pipelines , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 695 – 706 10.31399...
Abstract
A case of continual product refinement stimulated by product failures was described. Brittle fracture of gas transmission line pipe steels occurred demonstrating a poor combination of materials, environment, manufacturing and installation problems, and loads. Initial efforts were concentrated towards decreasing the Charpy ductile-to-brittle transition temperature to avoid brittle fracture. It was subsequently revealed that the absorbed energy on the upper shelf of the Charpy energy-temperature curve was critical for arresting a moving crack. Both fracture initiation and fracture propagation were needed be controlled. It was concluded that improved steel processing procedures, chiefly hot-working temperature and deformation control, were also required to optimize microstructure and properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
... that are 6.4 m (21 ft) in diameter and 7.7 m long, making them the largest circular precast structures ever built. These siphons are designated as the Centennial Wash (CWS), Jackrabbit Wash (JWS), Hassayampa River (HRS), Agua Fria River (AFRS), New River (NRS), and Salt River siphons (SRS). The large diameter...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047537
EISBN: 978-1-62708-228-0
... and embrittlement Joining-related failures During the construction of a large-diameter pipeline, several girth welds had to be cut out as a result of radiographic interpretation. The pipeline was constructed of 910-mm (36-in.) diam × 13-mm (0.5-in.) wall thickness grade X448 (X65) line pipe. The girth welds...
Abstract
During the construction of a large-diam pipeline, several girth welds had to be cut out as a result of radiographic interpretation. The pipeline was constructed of 910 mm (36 in.) diam x 13 mm (0.5 in.) wall thickness grade X448 (x65) line pipe. The girth welds were fabricated using standard vertical down stove pipe-welding procedures with E7010 cellulosic electrodes. The crack started partially as a result of incomplete fusion on the pipe side wall, which in turn was a result of misalignment of the two pipes. The crack was typical of hydrogen cracking. Girth welds can be made using cellulosic electrodes. For high-risk girth welds, an increase in preheat and/or a reduction in the local stress by controlling lift height or depositing the hot pass locally before lifting may be required.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001234
EISBN: 978-1-62708-232-7
... Abstract In a copper hot water system, a bent pipe was soldered into a straight pipe with twice the diameter. The neighborhood of the soldered joint was covered with corrosion product predominantly blue-green in color, presumably carbonates. When these corrosion products were scratched off...
Abstract
In a copper hot water system, a bent pipe was soldered into a straight pipe with twice the diameter. The neighborhood of the soldered joint was covered with corrosion product predominantly blue-green in color, presumably carbonates. When these corrosion products were scratched off it was seen that the copper beneath this layer had not suffered noticeable attack. The object of the examination was the localized deep cavities located almost symmetrically to both sides of the inserted end of the narrower tube on the internal wall of the wider tube which had in one place been eaten right through. The symmetrical location on each side of the point of insertion of the narrower pipe and the localized sharp delineation of the attack indicated erosion due to the formation of turbulence. By avoiding sharp transitions and abrupt changes in cross section it is possible to design the pipe work so that localized turbulence is obviated. Degassing and cleansing of the water also would reduce the danger of erosion particularly in the case of softened water, which takes up oxygen and carbon dioxide very readily thus becoming particularly aggressive.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001275
EISBN: 978-1-62708-215-0
... to an accumulation of gas under a residence and a serious explosion. Applications The 10-cm (4-in.) nominal diameter pipe had been in service for approximately ten years prior to failure. The pipe was operated as an intermediate pressure line, with a nominal pressure of 0.2 MPa (30 psi). It had been attached...
Abstract
A high-density polyethylene (HDPE) natural gas distribution pipe (Grade PE 3306) failed by slow, stable crack growth while in residential service. The leak occurred at a location where a squeeze clamp had been used to close the pipe during maintenance. Failure analysis showed that the origin of the failure was a small surface crack in the inner pipe wall produced by the clamping. Fracture mechanics calculations confirmed that the suspected failure process would result in a failure time close to the actual time to failure. It was recommended that: materials be screened for susceptibility to the formation of the inner wall cracks since it was not found to occur in pipe typical of that currently being placed in service; pipes be re-rounded after clamp removal to minimize residual stresses which caused failure; and a metal reinforcing collar be placed around the squeeze location after clamp removal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001699
EISBN: 978-1-62708-234-1
.... The system primarily comprised of steel pipes with threaded connections for the 2-inch (46.32 cms) pipes, and bolted flanged couplings for the larger diameter pipes. The large pipes were up to 18 inches (55.72 cms) in diameter. The heat exchangers within the fan coil units mainly consisted of copper coils...
Abstract
A shopping mall in South Carolina was originally constructed in 1988 and a second phase completed in 1989. The HVAC system inside the mall included an open, recirculating condenser water loop that served various fan coil units located within tenant spaces. The system had a recirculating capacity of about 44,000 gal (166,000 L) of water. It consisted primarily of steel pipes fitted with threaded connectors on the 2 in. (46 cm) pipes and bolted flanged couplings on the larger pipes. Seven years following the completion of the mall, corrosion problems were noted at the outer and inner surfaces of the pipe. Visual observations on the inner diametral surfaces revealed that the pipes were, in almost all cases, filled with corrosion products. A significant amount of base metal loss was documented in all of the samples. The cause of the observed corrosion was determined to be a lack of corrosion monitoring and poor water quality. Pipe replacement and a regular water testing program were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket...
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001332
EISBN: 978-1-62708-215-0
... fabricated by welding and machining a ring insert within a flange with a larger internal diameter. Specimen Selection The cracked slip-on flange was received in one piece. It had two diametrically opposite cracks located on the pipe and gasket sides. Testing Procedure and Results Nondestructive...
Abstract
A cracked 356 mm (14 in.) diam slip-on flange (Ni-Cr-Mo-V steel) was submitted for failure analysis. Reported results and observations indicated that the flange was not an integral forging or a casting, as specified. It had been fabricated by welding and machining a ring insert within a flange with a larger internal diameter. The flange cracked because the welds between the flange and the insert were inadequate to withstand the bolting pressures. A warning was issued to end users of the flanges, which are being inspected nondestructively for conformance to specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006409
EISBN: 978-1-62708-217-4
... that are sealed with teflon-type tape when installed. Investigation Longitudinal cracks were located near the opening of the female ends of each connector ( Fig. 1a ). Both connectors had the same size female end but different size male ends. The connector with the large diameter and longer male end had...
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
..., before all the lines were completed. Type 304L stainless steel was selected from a number of alloys after extensive laboratory testing of corrosion resistance to the highly corrosive liquid. Each line was made of pipe 73 mm (2 7 8 in.) in diameter with a 5 mm (0.203 in.) wall thickness...
Abstract
One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months. Each line was made of 304L stainless steel pipe 73 mm (2 in.) in diam with a 5 mm (0.203 in.) wall thickness. Lengths of pipe were joined by shielded metal arc welding. Soundness of the welded joints was determined by water back-pressure testing after several lengths of pipe had been installed and joined. Before completion of the pipeline, a pressure drop was observed during back-pressure testing. An extreme depression in the backfill revealed the site of failure. Analysis (visual inspection, electrical conductivity, and soil analysis) supported the conclusions that the failure had resulted from galvanic corrosion at a point where the corrosivity of the soil was substantially greater than the average, resulting in a voltage decrease near the point of failure of about 1.3 to 1.7 V. Recommendations included that the pipelines be asphalt coated and enclosed in a concrete trough with a concrete cover. Also, magnesium anodes, connected electrically to each line, should be installed at periodic intervals along their entire length to provide cathodic protection.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048747
EISBN: 978-1-62708-229-7
... contributed to the failure. Recommendations included changing the joint design to incorporate a large-radius corner and improving fitting of the components to permit full weld penetration. Backing strips were suggested to increase weld quality, and the pipe wall thickness was increased from 8 to 9.5 mm...
Abstract
A 455 mm diam x 8 mm thick wall carbon steel (ASTM A 53) discharge line for a circulating-water system at a cooling tower fractured in service; a manifold section cracked where a Y-shaped connection had been welded. Investigation (visual inspection and photographs) supported the conclusion that the pipe failed by fatigue. Cracks originated at crevices and pits in the weld area that acted as stress raisers, producing high localized stresses because of the sharp-radius corner design. Abnormally high structural stresses and alternating stresses resulting from the pump vibrations contributed to the failure. Recommendations included changing the joint design to incorporate a large-radius corner and improving fitting of the components to permit full weld penetration. Backing strips were suggested to increase weld quality, and the pipe wall thickness was increased from 8 to 9.5 mm.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048850
EISBN: 978-1-62708-229-7
... of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking...
Abstract
Cracks on the outer surface near a hanger lug were revealed by visual inspection of a type 316 stainless steel main steam line of a major utility boiler system. Cracking was found to have initiated at the outside of the pipe wall or immediately beneath the surface. The microstructure of the failed pipe was found to consist of a matrix precipitate array (M23C6) and large s-phase particles in the grain boundaries. A portable grinding tool was used to prepare the surface and followed by swab etching. All material upstream of the boiler stop valve was revealed to have oriented the cracking normally or nearly so to the main hoop stress direction. Residual-stress measurements were made using a hole-drilling technique and strain gage rosettes. Large tensile axial residual stresses were measured at nearly every location investigated with a large residual hoop stress was found for locations before the stop valve. It was concluded using thermal stress analysis done using numerical methods and software identified as CREPLACYL that one or more severe thermal downshocks might cause the damage pattern that was found. The root cause of the failure was identified to be thermal fatigue, with associated creep relaxation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091384
EISBN: 978-1-62708-219-8
... axis. The perforations and the crack were at the 6 o'clock position. Investigation Visual examination of the pipe showed two large holes ( Fig. 1a ). The areas surrounding the holes showed delaminations and corrosion deposits. Radiography was performed to evaluate the material quality...
Abstract
A 25.4 cm (10 in.) diam gray cast iron water main pipe was buried in the soil beneath a concrete slab. The installation was believed to have been completed in the early 20th century. A leak from the pipe resulted in flooding of a warehouse. Once removed, the pipe revealed through-wall perforations and cracking along its axis. The perforations and the crack were at the 6 o'clock position. Investigation (visual inspection, radiography, unetched macrographs, and tensile testing) supported the conclusion that the failure occurred as result of years of exposure to ground water in the soil resulting in graphitic corrosion. Soils containing sulfates are particularly aggressive. Recommendations included pipe replacement. The wall thickness had been sufficiently reduced that the pipe could no longer support the required load. Water mains are designed for more than 100 years life. Ductile iron or coated and lined steel pipe, generally not susceptible to graphitic corrosion, were suggested as suitable replacement materials, and cathodic protection was also considered as a possibility.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... may include, but is not limited to: Date of installation Piping material grade Diameter and wall thickness Seam weld type (if any) Coating type Cathodic protection information Previous hydrotest results (including dates, pressures, and times) In-line inspection results...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001235
EISBN: 978-1-62708-228-0
... from the entrance of the 12 km long pipe line that was operated under 60 atm. pressure. Where the pipes had not rusted their inner surfaces showed a black film, and also large flat blisters ( Fig. 1 ) when observed obliquely. Ultrasonic testing also showed separations at many places where...
Abstract
A welded natural gas line of 400 mm OD and 9 mm wall thickness made of unalloyed steel with 0.22C had to be removed from service after four months because of a pipe burst. Metallographic examination showed the pipe section located next to the gas entrance was permeated by cracks or blisters almost over its entire perimeter in agreement with the ultrasonic test results. Only the weld seam and a strip on each side of it were crack-free. Based on this investigation, the pipeline was taken out of service and reconstructed. To avoid such failures in the future, two preventative measures may be considered. One is to desulfurize the gas. Based on tests, however, the desulfurization would have to be carried very far to be successful. The second possibility is to dry the gas to such an extent as to prevent condensate, and this corrosion, from forming no matter how low winter temperatures may drop. This measure was ultimately recommended, deemed more effective and cheaper.
Image
in Cracking of a Field Girth Weld
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Fig. 1 Failed girth weld in a large-diameter pipeline. (a) Crack that initiated at the root and propagated through 50% of wall thickness. 4×. (b) Detail showing crack-initiation site due in part to incomplete fusion on pipe side wall. 12.5×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048846
EISBN: 978-1-62708-234-1
... Abstract A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough...
Abstract
A main steam pipe was found to be leaking due to a large circumferential crack in a pipe-to-fitting weld in one of two steam leads between the superheater outlet nozzles and the turbine stop valves (a line made of SA335-P22 material). The main crack surface was found to be rough, oriented about normal to the outside surface, and had a dark oxidized appearance. The cracking was found to be predominantly intergranular. Distinct shiny bands that etched slower than the remainder of the sample at the top of each individual weld bead were revealed by microscopic examination. These bands were found contain small cracks and microvoids. A mechanism of intergranular creep rupture at elevated temperature was identified as a result of a series of stress-rupture and tensile tests. It was revealed by the crack shape that cracking initiated on the pipe exterior, then propagated inward and in the circumferential direction in response to a bending moment load. It was concluded that the primary cause of failure was the occurrence of bending stresses that exceeded the stress levels predicted by design calculations and that were higher than the maximum allowable primary membrane stress.
1