1-20 of 292 Search Results for

laboratory corrosion testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 1992
Fig. 6 Results of laboratory hot corrosion (cyclic) tests on HH steel coupons for 100h. (a) and (b) Coupons corroded undersulfate and sulfate-chloride loading, respectively (c) and (d) Corrosion morphology undersulfate and sulfate-chloride loading, respectively. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048607
EISBN: 978-1-62708-225-9
... disclosed a copper-colored residue adhering to the threads. This residue was from the antiseizure compound that had been applied during assembly. Accelerated Corrosion Testing Laboratory corrosion tests were conducted on four bolts taken from stock. The purpose of the tests was to determine...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... did that showing the higher content. Further work, which involved exposing to laboratory corrosion tests over a period of two years a number of alloys having a range of composition and aged for different times at different temperatures, suggested that extended ageing for 24 hours at a temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... casting showing area of stress-corrosion crack that occurred in service (arrows) and area of ductile fracture produced in a laboratory bend test. 2 1 2 ×. (e) Fractograph showing a gas pocket in a bend-test specimen. 2 1 2 ×. (f) Fractograph showing dross inclusions and porosity. 2 1...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
... low strength. When heat-treated for strength, AlCu 2 forms and the strength is increased. Over-heating during welding can sensitize these materials for corrosion. Manganese is the major alloying element of 3003. Tests Testing can be in a laboratory or a pilot-plant. Pilot-plant or field tests...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... cleaning Storage tanks 1006 UNS G10060 Uniform corrosion Metalworking-related failures Introduction After defining the cause of failure by laboratory analysis, most often corrective measures can be established. However, additional laboratory tests are sometimes needed, first to recreate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... Abstract Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091201
EISBN: 978-1-62708-219-8
.... On-Site Sampling Water samples were obtained for corrosivity and MIC testing. Commercially available field MIC kits were used. Samples of the damaged pipe were removed. Laboratory Testing High levels of chlorides, as high as 20,000 ppm, were reported in the water sample. The total dissolved...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001070
EISBN: 978-1-62708-214-3
... Abstract Although field corrosion tests had indicated that type 316L stainless steel would be a suitable material for neutralization tanks, the vessels suffered severe corrosion when placed in service. Welded coupons of type 316L had been tested along with similar Alloy 20Cb® (UNS NO8020...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001054
EISBN: 978-1-62708-214-3
... of specimens taken from similar components was at the silver/silver bond interface. Laboratory testing revealed that the uranium/silver joint was susceptible to premature failure by stress-corrosion cracking under sustained loading if the atmosphere was saturated with water vapor. Selected Reference...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
... in this temperature range, and laboratory tests with 2-14% Cr steel verified this. Boiler tubes Corrosion environments Sodium hydroxide Warships Fe-0.13C Hydrogen damage and embrittlement Introduction Except to those directly concerned with the service failure, a report of analysis...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001046
EISBN: 978-1-62708-214-3
... HCl and Cl2, for in situ testing. Results of this investigation showed that nickel-chromium corrosion-resistant alloys, such as Inconel 600, Inconel 625, and Inco alloy C-276, performed well in this environment. Laboratory testing of the same alloys, along with Inconel alloys 601, 617, and 690...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... • Warke W. R. , Stress-Corrosion Cracking , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 823 – 860 10.31399/asm.hb.v11.a0003553 Remedial Action Conclusion and Recommendations Most Probable Cause Fractographic Analysis of Laboratory Test...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... length vs. time for NAB tested in seawater + ammonia (HTQ-3) Fig. 11 NAB RSL fracture surfaces in a laboratory air (MVC), b seawater (MVC), and c seawater + ammonia (IG). Fatigue precrack is located at bottom Fig. 12 Calculated crack length as a function of time for constant...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091358
EISBN: 978-1-62708-233-4
... of manganese sulfide were observed in each of the three metallographic specimens. Figure 1 shows a micrograph of an unetched specimen from the corroded region on the end of the used valve body (valve body 1 in the immersion test). The corroded surface is an end-grain surface, and the corrosion began...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001806
EISBN: 978-1-62708-241-9
... than one year of service in an outdoor industrial environonment. The observed failures, which consisted of cracks in the body and end cap, were analyzed and found to be brittle fractures due to stress-corrosion cracking. Two common stress-corrosion cracking tests for copper materials were conducted...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... with a discussion on correlations between laboratory results and service. bearings brittle materials cavitation erosion cavitation resistance cavitation test centrifugal pumps ductile materials gearbox CAVITATION EROSION is a type of wear in hydraulic turbines, on pump impellers, on ship...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... and 2000 MPa) by cold working and age hardening at 850 F (454 C) fr 30 min. 5 Initial laboratory testing indicated that Custom 455 was somewhat more resistant to stress corrosion than 17-7 PH. The former was selected for several sets of compression springs used in the deployment of missile fairing...
Image
Published: 01 June 2019
produced in laboratory bend tests. (d) Fractograph of a broken casting showing area of stress-corrosion crack that occurred in service (arrows) and area of ductile fracture produced in a laboratory bend test. 2 1 2 ×. (e) Fractograph showing a gas pocket in a bend-test specimen. 2 1 2 More