1-20 of 58 Search Results for

iron-cobalt alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
...-chrome-nickel- molybdenum-iron alloy ISO 5832-7 Wrought cobalt-nickel-chrome- molybdenum-tungsten-iron alloy ISO 5832-8 Wrought high nitrogen stainless steel ISO 5832-9 Wrought titanium 5-aluminum 2.5-iron alloy ISO 5832-10 Wrought titanium 6-aluminum 7-niobium alloy ISO 5832-11...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... 1150 2100 4 405, 410 705 1300 4 416 675 1245 4 420 620 1150 4 430 815 1500 4 440 760 1400 4 442 980 1795 4 446 1095 2005 4 Superalloys N-155 iron-base superalloy 1040 1900 1 S-816 cobalt-base superalloy 980 1800 1...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
..., % Implant ASTM F-75 requirements Chromium 27.9 27.0–30.0 Molybdenum 6.11 5.0–7.0 Nickel 0.06 1.0 (max) Iron 0.24 0.75 (max) Carbon 0.245 0.35 (max) Silicon 0.68 1.0 (max) Manganes 0.32 1.0 (max) Cobalt … bal Quality control includes tensile testing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
...-base superalloy 1040 1905 3 S-816 cobalt-base alloy 980 1795 3 Hastelloy X nickel-base superalloy 1205 2200 3 HX (17Cr-66Ni-bal Fe) 1150 2100 3 (a) Seamless tube. (b) Electric-resistance-welded tube General power plant classifications Table 2 General...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... ( 1962 ). 21. Rivlin V. G. , “6: Critical Evaluation of Constitution of Cobalt-Chromium-Iron and Cobalt-Iron-Nickel Systems” , Int. Metals Rev. , Vol. 26 , p. 269 ( 1981 ). 10.1179/imtr.1981.26.1.269 22. El Dahshan M. E. , Whittle D. P. and Stringer J...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001712
EISBN: 978-1-62708-234-1
... resistant alloys. Ten alloys were chosen for the experiment. The alloys contained differing amounts of the elements nickel, chromium, iron, cobalt, tungsten, and silicon. The chemical analysis of the samples is shown in Table 4 . Chemical analysis of the alloys used in the experiment. Complete...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
.... , Buckley C.A. , et al. : “ Intergranular Corrosion-Fatigue Failure of Cobalt-Alloy Femoral Stems ,” J. Bone Joint Surg. Am. , 1994 , 76 ( 1 ), pp. 110 – 115 10.2106/00004623-199401000-00014 . 15. Chaodi L. , Christopher G. , et al. : “ Progressive Failure Analysis of Laminated...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... implant materials: Stainless steel: ASTM F 55-82, ASTM F 56-82, ASTM F 138-82, ASTM F 139-82 (contains remelted Special Quality), ISO/DIS 5832/1 (1986) Unalloyed titanium: ASTM F 67-83, ISO 5832/II (1984) Titanium alloy Ti-6Al-4V ELI: ASTM F 136-79, ISO 5832/III (1978) Cast cobalt...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
.... The turbine vanes as stationary hot parts are not subjected to centrifugal loads and can be made of high-strength-cast cobalt-based superalloys. Cobalt-based superalloys such as FSX 414 show good resistance to hot corrosion and good weldability. Iron–nickel-based superalloys, e.g., Inconel 718 are typically...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001367
EISBN: 978-1-62708-215-0
... Copper 0.10 NR Aluminum 0.050 0.020 min for fine grain Cobalt 0.030 NR Iron bal. bal. (a) NR, not required Hardness Rockwell B hardness indentations were made in several areas of the second stage impeller material; the average hardness was found to be 95 HRB. ...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006398
EISBN: 978-1-62708-217-4
... during the 5 days. Emission spectroscopy of the corrosion products showed that small amounts of aluminum (4%), sodium (3%), cobalt (2%), chromium (0.35%), boron (0.25%), and iron (0.05%) were present. The remaining 90% of the material analyzed was nonmetallic. It was concluded that the marking...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... Cobalt Ammonium thiocyanate/acetone Blue color Identify cobalt-base alloys Copper Dithizone Purple color Sort copper-bearing stainless steels Iron Potassium ferricyanide Blue precipitate Sort low-iron high-temperature alloys Lead Sulfuric acid White precipitate Sort leaded bronze...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... that are far more erosion resistant than the standard constructional materials described earlier are well known. The best of these, exemplified by cobalt-base alloys and NiTi alloys, are characterized by energy-absorbing deformation modes: fine twinning, stress- or strain-induced phase transformation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... of creep °C °F T as ratio of T M , K Aluminum alloys 150–200 300–400 0.48–0.54 T M Titanium alloys 315 600 0.3 T M Low-alloy steels 370 700 0.36 T M Austenitic, iron-base, heat-resisting alloys 540 1000 0.49 T M Nickel- and cobalt-base heat-resisting alloys...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... 300–390 0.48–0.54 T M Titanium alloys 315 600 0.3 T M Low-alloy steels 370 700 0.36 T M Austenitic, iron-base heat-resisting alloys 540 1000 0.49 T M Nickel- and cobalt-base heat-resisting alloys 650 1200 0.56 T M Refractory metals and alloys 980–1540 1800...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... have been partially displaced by low-alloy quenched-and-tempered steels and martensitic white irons ( Ref 10 ). High-stress, or grinding, abrasion occurs when abrasive particles are compressed between two solid surfaces, as, for example, between grinding rods or balls. The high-stress abrasion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... crushers, and earth-moving tools, the manganese steels have been partially displaced by low-alloy quenched-and-tempered steels and martensitic white irons ( Ref 10 ). High-Stress, Or Grinding, Abrasion High-stress, or grinding, abrasion occurs when abrasive particles are compressed between two solid...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... environment. Generally, the relative positions of metals and alloys in both emf and galvanic series are the same. An exception is the position of cadmium with respect to iron and its alloys. In the emf series, cadmium is cathodic to iron, but in the galvanic series (at least in seawater), cadmium is anodic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001665
EISBN: 978-1-62708-231-0
... Metals,” J. Inst. Met. (London) , Vol. 37 , pp. 215 – 221 ( 1927 ). 7. Hough R. R. and Rolls R. , “The High-Temperature Tensile Creep Behavior of Notched Pure Iron Embrittled by Liquid Copper,” Scripta Metallurgica , Vol. 4 , pp. 17 – 23 ( 1970 ). 10.1016/0036-9748(70)90136-5...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... alloys are used for the relatively cool components, such as those in the fan and low-pressure compressor sections. Nickel-base, iron-nickel, and iron-base heat-resisting alloys are used for “warm” parts, such as shafts, turbine disks, high-pressure compressor disks, and cases. Nickel-base and cobalt-base...