1-20 of 81 Search Results for

iron-carbon phase diagram

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
..., they give a good idea of the conditions required for a metal to form a specific compound. Fig. 9 Stability diagrams for oxides and sulfides of iron, nickel, and chromium as a function of oxygen and sulfur partial pressures. Source: Ref 3 These diagrams specify the stable phases in contact...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
.... The composition of the precipitates was analyzed using an electron microprobe. Silicon was not present in significant amounts, nor was oxygen, except near a filled branch crack that also showed small amounts of carbon. Phosphorus was absent, and iron, chromium, and nickel were present in amounts commensurate...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
..., it is possible to explain why and how redox variations are harmful to any refractory containing iron oxides as impurities; how the reduction of magnesia to magnesium gas and the reoxidation to MgO can be used with great advantage for MgO-carbon bricks (a destruction-reconstruction mechanism that leads...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
...Results of chemical analysis Table 1 Results of chemical analysis Element Composition, % Implant ASTM F-75 requirements Chromium 27.9 27.0–30.0 Molybdenum 6.11 5.0–7.0 Nickel 0.06 1.0 (max) Iron 0.24 0.75 (max) Carbon 0.245 0.35 (max) Silicon 0.68 1.0...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001489
EISBN: 978-1-62708-217-4
... electron microscope (STEM). The STEM was equipped with a windowless energy dispersive spectroscopy (EDS) detector where analysis of lighter elements such as carbon, nitrogen, and oxygen was possible. The spectrochemical investigations were conducted on a large batch of samples using an SEM; here, the EDS...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001322
EISBN: 978-1-62708-215-0
..., is rather unusual. Hydrogen attack is generally attributed to the action of high-temperature acidic solutions on the water side of the tube ( Ref 7 ). The normal microstructure of SAE-192 carbon steel contains ferrite and pearlite phases. However, the microstructure of tube 2 in the fracture area...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
... the chromia layer diminishes, carburization process or metal dusting attack starts. This process continues by diffusion of carbon on the pipe and forms (chromium, iron) carbide. Initially, carbide forms as M 23 C 6 . When intrusions of carbon continue, the carbide at that position change to M 7 C 3 to MC...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... in the nickel-iron matrix Deposition of graphite on the alloy surface in different orientations Growth of graphite into the metal phase by carbon atoms from the solid solution, attaching to graphite planes growing vertical to the metal surface Destruction of the metal phase by the inward-growing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... temperature and the M s may be determined in order to construct a CCT diagram, such as the one shown for an unalloyed carbon steel (AISI 1045) in Fig. 2 . Continuous cooling transformation curves provide data on the temperatures for each phase transformation, the amount of transformation product obtained...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... Electrolytic etchant used to remove carbon films for extraction replicas. 10% HCl in methanol use at 8—10 V, 0.2—0.5 A/cm 2 , 25°C Conditions used for preparation of thin foil transmission electron microscopy samples. 950 ml acetic acid + 50 ml HClO4 use at 70—80 V, 100–200 MA, 15°C (60F...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
.... The author also thanks M.A. Streicher for his comprehensive analysis and fundamental understanding of ferritic stainless steels. References References 1. Streicher M.A. : “ The Role of Carbon, Nitrogen, and Heat Treatment in the Dissolution of Iron-Chromium Alloys in Acids ,” Corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
... aluminum-rich precipitate particles (arrow 3). A carbon-enriched ferrite-pearlite layer, at some points reaching eutectoid composition (area 4). An iron oxide outer layer (area 5). Fig. 5 Cross-section showing the microstructure of the inside surface of the pot at B in Figure 2 , note...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... images of dimple-rupture fractures. (a) Fracture of low-alloy medium-carbon steel bolt (SAE grade 5). Original magnification: 1750×. (b) Equiaxed tensile dimples originating around the graphite nodules of ASTM 60-45-10 ductile iron. Original magnification: 350×. (c) Parabolic shear dimples in cast Ti-6Al...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
.... For nickel-base alloys, Grabke et al. ( Ref 14 – 17 ) proposed six mechanisms: Carbon transfer from the gas phase and dissolution of carbon into the metal phase at oxide defect sites Formation of a supersaturated solution of carbon in the nickel-iron matrix Deposition of graphite on the alloy...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... level of the steel or cast iron. This reduced carbon area is called the decarburized depth. Decarburization that remains on the workpiece prior to heat treatment can cause two major problems: Low surface hardness: The maximum attainable hardness for a ferrous material is a function of carbon...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... of carbide in plain low-carbon steel is as follows. In low-carbon steel before service, the carbide is present as pearlite, which consists of alternate lamellae of iron carbide and ferrite. Following heating, the pearlite starts to spheroidize, sometimes known as divorce of pearlite, and continued heating...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... of the (bright) iron based particles in Fig. 1(b) . Some traces of carbon are also seen here, probably an oily residue on the flake. The silicon may be due to a dirt contaminant. (b) Portion of the scan obtained from one of the (dark) aluminum based particles. The unlabeled peak at the far left of both plots...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... electron acceptors involved in microbial metabolism include oxygen, nitrate, iron (III), and carbon dioxide. All of these species could theoretically be involved as the electron acceptor, X , in the corrosion of metals ( Eq 1 ) but evidence for direct MIC based on other electron acceptors is limited...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... in binary alloys that contain phases of differing corrosion potentials. The grain in one phase becomes anodic to the grain in the second phase in the microstructure, thus producing an electrolytic cell when the proper electrolyte is present. Another illustration is ductile cast iron, where...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... by cleavage in second-phase (silicon) particles and other second phases. Fig. 1 SEM images of dimple-rupture fractures. (a) Fracture of low-alloy medium-carbon steel bolt (SAE grade 5). 1750×. (b) Equiaxed tensile dimples originating around the graphite nodules of ASTM 60-45-10 ductile iron. 350×. (c...