Skip Nav Destination
Close Modal
By
Christopher A. Walton, Benjamin E. Nesbit, Henrique M. Candia, Zachary A. Myers, Wilburn R. Whittington ...
Search Results for
iron alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 347 Search Results for
iron alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049796
EISBN: 978-1-62708-235-8
... by electrical heating of the bridgewire. Evidence of severe corrosion was revealed on examination of the nickel-chromium-iron alloy bridgewire and the nickel-iron alloy pins. Metallic elements in the pin or bridgewire and substantial amounts of chlorine were detected from the x-ray spectra. Morphological...
Abstract
Problems with materials compatibility were encountered in pyrotechnically driven devices used in a number of ordnance applications requiring rapid mechanical actuation. A fine bridgewire is located in contact with the chemical pyrotechnic, and the charge is ignited by electrical heating of the bridgewire. Evidence of severe corrosion was revealed on examination of the nickel-chromium-iron alloy bridgewire and the nickel-iron alloy pins. Metallic elements in the pin or bridgewire and substantial amounts of chlorine were detected from the x-ray spectra. Morphological changes indicative of decomposition and dissolution were revealed to have occurred in regions of the pyrotechnic that had been in contact with the bridgewire and pin surfaces by examination of the titanium-potassium perchlorate (Ti-K-Cl-O4) pyrotechnic. Substantial amounts of water were revealed to be associated with the surfaces of the titanium particles in the pyrotechnic by nuclear magnetic resonance. It was proposed that the chlorine-containing residue combined with the water from the pyrotechnic to form a thin aqueous film corroding the bridgewire and pins. A new cleaning procedure was implemented for the glass headers to eliminate the chloride contamination and a vacuum drying procedure was instituted for the pyrotechnic.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0045909
EISBN: 978-1-62708-232-7
...Abstract Abstract A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were...
Abstract
A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished and etched and were found to be composed of ferrite and pearlite mixtures, as would be expected. However, the sample taken from a location about 75 mm (3 in.) from the hole contained a cluster of unusually large inclusions. By removing the beryllium window from in front of the detector, EPMA spectra were obtained from the inclusions and from the steel matrix. The inclusion spectrum contained primarily iron and oxygen, whereas the matrix spectrum contained primarily iron. X-ray maps were made to show the distribution of iron and oxygen. These results indicated that the inclusions were iron oxide. A similar inclusion at the failure site in the melting pot may have reacted violently with the molten magnesium, causing the leak.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001238
EISBN: 978-1-62708-232-7
.... This form of internal oxidation is, in the case of Ni-Cr alloys, known as green rot. Alloys containing iron should be more resistant. As a preventive measure it was recommended to reduce the operating temperature of the strip sufficiently to allow the use of Fe-Ni-Cr alloys. Electric heating elements...
Abstract
Heating elements, consisting of strips, 40 mm x 2 mm, of the widely used 80Ni-20Cr resistance heating alloy, and designed to withstand a temperature of 1175 deg C, were rendered unusable by scaling after a few months service in a through-type annealing furnace, Although the temperature supposedly did not exceed 1050 deg C. Structural observations indicated a special case of internal oxidation. The required conditions for this were apparently provided by the moist hydrogen atmosphere of the annealing furnace, in which the chromium was oxidized, while the oxides of iron and nickel were reduced. Even the carbon suffered incomplete combustion and was enriched in the core. Thus, no protective layer could form or be maintained. The intergranular advancement of the oxidation may have been favored by the precipitation of chromium-rich carbides on the austenite grain boundaries. This form of internal oxidation is, in the case of Ni-Cr alloys, known as green rot. Alloys containing iron should be more resistant. As a preventive measure it was recommended to reduce the operating temperature of the strip sufficiently to allow the use of Fe-Ni-Cr alloys.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
...Abstract Abstract A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower...
Abstract
A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical properties and alloy designation were not specified. Investigation (visual inspection, 187x SEM images, unetched 30x images, hardness testing, and chemical analysis) of both the failed adapter and an exemplar casting from known-good lot supported the conclusion that the casting failed as a result of brittle overload fracture due to excessive iron-zinc phase and gross porosity. These conditions acted synergistically to reduce the strength of the material. The composition was nonstandard, and the inherent brittleness suggested that it was unlikely that this material was an intentional proprietary alloy. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001215
EISBN: 978-1-62708-235-8
... alloy formation. Even in the case of steel parts with lower silicon contents the reaction between iron and zinc can continue until the pure zinc layer has been consumed entirely if the work piece is not cooled sufficiently after withdrawal. Coating defects Galvanized steels Hot dip galvanizing...
Abstract
The surface of a hook did not possess the smooth and shiny zinc bloom surface normally observed on hot galvanized steel parts but was matte and rough. Large cracks were observed in the zinc layer. The hook was made of silicon-killed alloy steel 41Cr4. A silicon content of 0.27% was established analytically. Silicon accelerates the reaction between iron and zinc, which should have been taken into account in the present case by reducing the dip time or a small addition of aluminum (0.1 to 0.2%) to the galvanizing bath to retard the extremely rapid growth of the zinc layer and the strong alloy formation. Even in the case of steel parts with lower silicon contents the reaction between iron and zinc can continue until the pure zinc layer has been consumed entirely if the work piece is not cooled sufficiently after withdrawal.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0046505
EISBN: 978-1-62708-219-8
... been in service approximately 21 months. The valve consisted of a cast copper alloy clapper plate that was held closed by a pivoted malleable iron latch ( Fig. 1a ). The latch and top surface of the clapper plate were usually in a sanitary-water environment (stabilized, chlorinated well water...
Abstract
One of three valves in a dry automatic sprinkler system tripped accidentally, thus activating the sprinklers. Maintenance records showed that the three valves had been in service less than two years. The valve consisted of a cast copper alloy clapper plate that was held closed by a pivoted malleable iron latch. The latch and top surface of the clapper plate were usually in a sanitary-water environment (stabilized, chlorinated well water with a pH of 7.3) under stagnant conditions. Process make-up water that had been clarified, filtered, softened, and chlorinated and had a pH of 9.8 was occasionally used in the system. Analysis (visual inspection and 250x micrograph) supported the conclusions that failure of the latch was caused by plastic deformation from extensive loss of metal by galvanic corrosion and the sudden loading related to the tripping of the valve. Failure in some regions of the contact area was by ductile (transgranular) fracture. Recommendations included changing the latch material from malleable iron to silicon bronze (C87300). The use of silicon bronze prevents corrosion or galvanic attack and proper adjustment of the latch maintains an adequate contact area.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form...
Abstract
After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
...-resistant alloy, such as nickel, nickel-base alloy, or stainless steel, was recommended. As an immediate measure to halt the anode decay, placing strainers in the inlets of the cells was suggested to filter the iron powder. The corroded carbon steel top plates were clad using E NiCrFe-2 electrodes...
Abstract
Nickel anodes failed in several electrolysis cells in a heavy-water upgrading plant. Dismantling of a cell revealed gouging and the presence of loosely attached black porous masses on the anode. The carbon steel top, plate was severely corroded. An appreciable quantity of black powder was also present on the bottom or the cell. SEM/EDX studies of the outer and inner surfaces of the gouged anode showed the presence of iron globules at the interface between the gouged and the unattacked anode. The chemical composition of the black powder was determined to be primarily iron. Cell malfunction was attributed to the accelerated dissolution of the carbon steel anode top, dislodgment of grains from the material, and subsequent closing of the small annular space between the anode and the cathode by debris from the anode top. Cladding of the carbon steel top with a corrosion-resistant material, such as nickel, nickel-base alloy, or stainless steel, was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091806
EISBN: 978-1-62708-219-8
... of power station condenser tubing cooled by seawater for two copper alloys, an aluminum brass alloyed with arsenic (UNS C68700, ASTM B111, or Cu-Zn-20Al DIN17660), and a cupronickel 70-30 alloy with iron added (C71500, ASTM B111, or Cu-Ni-30Fe DIN17665)) supported the conclusion that the failure was caused...
Abstract
A failure occurred in buried brass (92% Cu, 8% Zn) piping used to carry drinking water in wet clay soil after less than two years in service. Investigation (visual inspection, chemical analysis of both the pipe surface and water, and a comparison of the corrosion failure of power station condenser tubing cooled by seawater for two copper alloys, an aluminum brass alloyed with arsenic (UNS C68700, ASTM B111, or Cu-Zn-20Al DIN17660), and a cupronickel 70-30 alloy with iron added (C71500, ASTM B111, or Cu-Ni-30Fe DIN17665)) supported the conclusion that the failure was caused by microbial induced corrosion by sulfate-reducing bacteria. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047347
EISBN: 978-1-62708-234-1
...Abstract Abstract A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination...
Abstract
A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination indicated a heavily deformed surface layer with chip formation at the wear surface. The chemical composition of the liner was found to be Fe-2.74C-0.75Mn-0.55Si-0.51Ni-19.4Cr-1.15M. This alloy is highly resistant to abrasive wear, yet at the same time, prone to chipping because little plastic displacement will occur at the surface. The liner failed as a result of severe abrasion caused by the impact of taconite rock. This was a material-selection problem in that the wrong alloy was used for a condition not anticipated in the original choice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001163
EISBN: 978-1-62708-234-1
... out of the pitted areas. Alternatively polishing and etching micro-sections for viewing at high magnification made crack detail more visible. Optical and scanning electron micrographs showed cracking in austenitic cast steel and cast iron due to both internal tensile and critical residual stresses...
Abstract
Practical examples of stress-corrosion cracking (SCC) and methods for its prevention were presented. Cracks in chloride-sensitive austenitic steels were very branched and transcrystalline. Etched cross sections of molybdenum-free samples showed chloride-induced cracks running out of the pitted areas. Alternatively polishing and etching micro-sections for viewing at high magnification made crack detail more visible. Optical and scanning electron micrographs showed cracking in austenitic cast steel and cast iron due to both internal tensile and critical residual stresses; the latter causes flake-like spalling. Measures to prevent SCC include stress reduction, use of austenitic steels or nickel alloys not susceptible to grain boundary attack, use of ferritic chromium steels, surface slag removal, control of temperature and chloride concentration, and cathodic protection.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001202
EISBN: 978-1-62708-234-1
... to cavitation. Alloy cast iron Impellers Rotary pumps GGL NiCuCr 15 6 2 Cavitation wear The two damaged impellers made of austenitic cast iron came from a rotary pump used for pumping brine mixed with drifting sand. On one of the impellers, pieces were broken out of the back wall in four places...
Abstract
Two damaged impellers made of austenitic cast iron came from a rotary pump used for pumping brine mixed with drifting sand. On one of the impellers, pieces were broken out of the back wall in four places at the junction to the blades. The fracture edges followed the shape of the blade. Numerous cavitation pits were seen on the inner side of the front wall visible through the breaks in the back wall. The back wall of the as yet intact second impeller which did not show such deep cavitation pits was cracked in places along the line of the blades. The microstructure consisted of lamellar graphite and carbides in an austenitic matrix and was considered normal for the specified material GGL Ni-Cu-Cr 15 6 2. It was concluded that the cause of the damage was porosity at the junction between back wall and blades arising during the casting process. Cavitation did not contribute to fracture but also could have led to damage in the long term in the case of a sound casting. It is therefore advisable in the manufacture of new impellers to take care not only to avoid porosity but also to use alloy GGL Ni-Cu-Cr 15 6 3, which has a higher chromium content and is more resistant to cavitation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048708
EISBN: 978-1-62708-229-7
...Abstract Abstract The horizontal heat-exchanger tubes made of copper alloy C70600, in one of two hydraulic-oil coolers in an electric power plant, leaked after 18 months of service. River water was used as the coolant in the heat-exchanger tubes. Several nodules on the inner surface and holes...
Abstract
The horizontal heat-exchanger tubes made of copper alloy C70600, in one of two hydraulic-oil coolers in an electric power plant, leaked after 18 months of service. River water was used as the coolant in the heat-exchanger tubes. Several nodules on the inner surface and holes through the tube wall, which appeared to have formed by pitting under the nodules, were revealed by visual examination. Steep sidewalls, which indicated a high rate of attack, were revealed by microscopic examination of a section through the pit which had penetrated the tube wall. The major constituent of reddish deposit on the inner surfaces of the tubes was revealed to be iron oxide and slight manganese dioxide. Effluent from steel mills upstream was indicated by the presence of these and other constituents to be the source of most of the solids found in the tubes. It was concluded that the tubing failed by crevice corrosion. The tubing in the cooler was replaced, and cooling-water supply was changed from river to city water, which contained no dirt to deposit on the tube surfaces. An alternate solution of installing replacement tubes in the vertical position to make deposition of solids from river water less likely was suggested.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001538
EISBN: 978-1-62708-217-4
...Abstract Abstract Examination of a cracked nose landing gear cylinder made of AISI 4340 Cr-Mo-Ni alloy steel proved that the part started to fail on the inside diam. When the nucleus of the stress-corrosion crack was studied in detail, iron oxide was found on the fracture surface. A 6500x...
Abstract
Examination of a cracked nose landing gear cylinder made of AISI 4340 Cr-Mo-Ni alloy steel proved that the part started to fail on the inside diam. When the nucleus of the stress-corrosion crack was studied in detail, iron oxide was found on the fracture surface. A 6500x micrograph revealed this area also displayed an intergranular texture. One of a group of small grinding cracks on the ID of the cylinder nucleated the failure. Other evidence indicated the cracks developed when the cylinder was ground during overhaul.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
...Abstract Abstract An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600...
Abstract
An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB. The microstructure consisted of eutectic chromium carbides (Cr7C3) in a matrix of retained austenite and martensite intermingled with secondary carbides. Analysis (visual inspection and 500x view of sections etched with Marble's reagent) supported the conclusion that the low hardness resulted from an excessive amount of retained austenite. This caused reduced wear resistance and thus rapid wear in service. Recommendations included avoiding an excessive austenitizing temperature and excessive cooling rates from the austenitizing temperature and controlling the chemical composition to avoid excessive hardenability for the section size involved.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
...Abstract Abstract A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used...
Abstract
A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used to construct a finite element model to analyze material performance under failure conditions. In addition, a full scale structural test was conducted to determine failure strength. It was concluded that the club failed not from ground impact but from a force reversal at the bottom of the downswing. Large moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
.... It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001069
EISBN: 978-1-62708-214-3
... and the unaffected cladding were compositionally similar and met the requirements of AISI type 317L stainless steel. The intermediate bond layer was a nickel-iron alloy. The corrosion deposits were primarily sulfur-bearing oxides of chromium, iron, and nickel. Results of chemical and SEM/EDS analyses...
Abstract
A segment of a stainless steel clad bottom cone of an acid sulfite pulping batch digester failed from severe corrosion loss. The digester was fabricated of 19 mm ( 3 4 in.) low-carbon steel with 3.8 mm (0.15 in.) type 317L stainless steel cladding. The manufacturing method for the cladding was unknown. Visual and metallographic analyses indicated that the failure was from transgranular stress-corrosion cracking (TGSCC), which caused extensive cracking and spalling of the cladding and was localized in a segment of the bottom cone. The remainder of the digester cladding was unaffected. The TGSCC was attributed to high, locked-in residual stresses from the cladding process. It was recommended that the bottom cone replacement segment be stress relieved prior to installation.