Skip Nav Destination
Close Modal
Search Results for
intergranular fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 622 Search Results for
intergranular fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... Abstract This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090881
EISBN: 978-1-62708-229-7
... power generation Steam generators Tubes Inconel 600 UNS N06600 Intergranular fracture Power plants use steam generators, which have hot reactor coolant water flowing through the generators. One power plant experienced a steam generator tube rupture in the early 1990s. Metallurgical evaluation...
Abstract
A power plant using two steam generators (vertical U-tube and shell heat exchangers, approximately 21 m (68 ft) high with a steam drum diameter of 6 m (20 ft)) experienced a steam generator tube rupture. Each steam generator contained 11,012 Inconel alloy 600 (nickel-base alloy) tubes measuring 19 mm OD, nominal wall thickness of 1.0 mm (0.042 in.), and average length of 18 m (57.75 ft). The original operating temperature of the reactor coolant was 328 deg C (621 deg F). A tube removal effort was conducted following the tube rupture event. Investigation (visual inspection, SEM fractographs, and micrographs) showed evidence of IGSCC initiating at the OD and IGA under ridgelike deposits that were analyzed and found to be slightly alkaline to very alkaline (caustic) in nature. Crack oxide analysis indicated sulfate levels in excess of expected values. The analysis supported the conclusion that that the deposits formed at locations that experienced steam blanketing or dryout at the higher levels of the steam generators. Recommendations included steam generator water-chemistry controls, chemical cleaning, and reduction of the primary reactor coolant system temperature.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047579
EISBN: 978-1-62708-234-1
... separation under subsequent loading. The studs fractured under service loads as a result of intergranular crack propagation in the HAZ. Rapid heating and cooling during attachment welding produced a martensitic structure in the HAZ of the stud, which cracked circumferentially from the combination of thermal...
Abstract
Several fractures occurred in flange studs used for remote handling of radioactive equipment. The studs, of quenched-and-tempered type 414 stainless steel, fractured in the HAZs produced in the studs during the circumferential welding that joined the studs to the flanges. The weld deposits were of type 347 stainless steel, and the flanges were type 304 stainless steel. Metallographic examination of the failed studs revealed that the HAZs contained regions of martensite and that intergranular cracks, which initiated at the stud surfaces during welding, propagated to complete separation under subsequent loading. The studs fractured under service loads as a result of intergranular crack propagation in the HAZ. Rapid heating and cooling during attachment welding produced a martensitic structure in the HAZ of the stud, which cracked circumferentially from the combination of thermal-gradient and phase-change stresses. Joining the studs to the flanges by welding should be discontinued. They should be attached by screw threads, using a key and keyway to prevent turning in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... Abstract This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Image
in Spring Fatigue Fractures Due to Microstructural Changes in Service
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Detail of a fracture origin, showing intergranular fracture and decreasing grain size inward from the surface
More
Image
Published: 01 January 2002
Fig. 2 SEM images of intergranular fracture with different grain morphologies. (a) Rock candy appearance from atmospheric stress-corrosion cracking of a high-strength aluminum alloy with equiaxed grains. 130×. (b) Intergranular fracture along the part line of an aluminum forging
More
Image
Published: 01 January 2002
Fig. 11 Mud cracks on the surface of an intergranular fracture in 7079-T651 aluminum that failed under SCC conditions in a 3.5% chloride solution. TEM replica
More
Image
in Failure of a Cast Dragline Bucket Tooth
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 2 SEM micrograph showing intergranular fracture along prior-austenite grain boundaries at fracture-initiation site in ultrahigh-strength steel dragline bucket tooth. 200×
More
Image
in Brittle Fracture of a Soybean-Oil Storage Tank Caused by High Service Stresses
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 2 SEM micrograph showing intergranular fracture along prior-austenite grain boundaries at fracture-initiation site in ultrahigh-strength steel dragline bucket tooth. 200x
More
Image
in Overload Failure of a Quench-Cracked AISI 4340 Steel Threaded Rod
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 3 Intergranular fracture mode within gray area of flaw. Crack growth direction is from bottom to top.
More
Image
in “On-Load Corrosion” in Tubes of High Pressure Boilers
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Failure Analysis of Brass Tubes
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Failure Analysis of Gas Turbine Engine Fuel Nozzle Heat Shields
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 8 Higher Magnification of Plate 3, Note Intergranular Fracture and “Mud Cracking” of Corrosion Products Scanning Electron Micrograph, 2000×
More
Image
in Combined EDX/AES Analysis of Failed Inconel 600 Steam Line Bellows
> ASM Failure Analysis Case Histories: Pulp and Paper Processing Equipment
Published: 01 June 2019
Fig. 4 EPMA spectrum obtained from a contaminated intergranular fracture area on the bend of a failed Inconel 600 bellows.
More
Image
in Metallographic Characterization of Liquid Metal Embrittlement in a Failed Locomotive Axle
> ASM Failure Analysis Case Histories: Rail and Rolling Stock
Published: 01 June 2019
Image
in Metallographic Characterization of Liquid Metal Embrittlement in a Failed Locomotive Axle
> ASM Failure Analysis Case Histories: Rail and Rolling Stock
Published: 01 June 2019
Image
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 9 SEM showing intergranular fracture surface of a coupling with large grains. See Fig. 6 for the corresponding microstructure.
More
Image
in Failure Analyses of Steel Breech Chambers Used With Aircraft Cartridge Ignition Starters
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Image
Published: 15 January 2021
Fig. 12 Mud cracks on the surface of an intergranular fracture in 7079-T651 aluminum that failed under stress-corrosion cracking conditions in a 3.5% chloride solution. Transmission electron microscopy replica
More
Image
Published: 15 January 2021
Fig. 1 Scanning electron microscopy images of (a) intergranular fracture in ion-nitrided layer of ductile iron (ASTM 80-55-06), (b) transgranular fracture by cleavage in ductile iron (ASTM 80-55-06), and (c) ductile fracture with equiaxed dimples from microvoid coalescence around graphite
More
1