1-20 of 454 Search Results for

intergranular corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091350
EISBN: 978-1-62708-227-3
... temperatures of 66 to 180 deg C (150 to 350 deg F), an alloy such as 5083 can become susceptible to intergranular corrosion. Investigation (visual inspection, corrosion testing, SEM images) supported the conclusion that the cracks occurred because during exposures to chloride solutions like seawater, galvanic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047453
EISBN: 978-1-62708-235-8
... Abstract The origins of the casting are unknown. It is included here as a classic case of intergranular corrosion. The part (apparently a pump outlet) was named the “rubber casting” because of the severity of the intergranular attack. Every grain boundary has been attacked to the extent...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... with 3-mm thick type 304 stainless steel walls and was about 305 mm (12 in.) in height and diam. Analysis (visual inspection and 500x micrographs etched with CuCl2) supported the conclusions that the pot failed by intergranular corrosion because an unstabilized austenitic stainless steel containing more...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001213
EISBN: 978-1-62708-220-4
..., a type of steel has to be chosen which is resistant to intergranular corrosion. Condensers (liquefiers) Screening X5CrNiMo 18 10 Intergranular corrosion Fragments of screen bars which as structural elements of a condenser had come into contact with cooling water from the mouth of a river...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
... the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001060
EISBN: 978-1-62708-214-3
... was caused by intergranular corrosion/stress-corrosion cracks that initiated from the external surface of the pipe reducer section. Contributory factors were the sensitized condition of the flange and the concentration of corrosive elements from the bleach stock plant environment on the external surface...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001123
EISBN: 978-1-62708-214-3
... was different from that specified. The presence of excess aluminum and lead impurities that had segregated to the grain boundaries, coupled with an inadequate amount of magnesium, resulted in intergranular corrosion and subsequent intergranular failure. Corrosion was accelerated by storage in a humid...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001061
EISBN: 978-1-62708-214-3
... and heat-affected zones (HAZs). Fracture/crack morphology was brittle and primarily intergranular and deposits at crack tips were primarily iron oxides with significant amounts of sodium compounds. On these bases, the cracking was characterized as intergranular stress-corrosion cracking (IGSCC). Corrosion...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001317
EISBN: 978-1-62708-215-0
... Abstract Two AISI type 316 stainless steel dished ends failed through the formation of intergranular stress-corrosion cracks (IGSCC) within a few months of service. The dished ends failed in the straight portions near the circumferential welds that joined the ends to the cylindrical portions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001561
EISBN: 978-1-62708-229-7
... Abstract An intergranular stress-corrosion cracking failure of 304 stainless steel pipe in 2000 ppm B as H3BO3 + H2O at 100 deg C was investigated. Constant extension rate testing produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal...
Image
Published: 01 January 2002
Fig. 37 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller's reagent. 500× More
Image
Published: 15 January 2021
Fig. 37 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller’s reagent. Original More
Image
Published: 01 January 2002
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200× More
Image
Published: 01 January 2002
Fig. 36 Intergranular corrosion of the inside surface heat-affected zone of E-Brite stainless steel adjacent to the weld fusion line. Electrolytically etched with 10% oxalic acid. 100× More
Image
Published: 01 January 2002
Fig. 58 Intergranular corrosion. (a) Sample from a cast stainless steel neck fitting. (b) Region adjacent to the intergranular corrosion revealing extensive σ-phase precipitation at grain boundaries; electrolytic etching using 10 N KOH. (c) Same area as (b) after repolishing and etching More
Image
Published: 01 December 1992
Fig. 6 Intergranular corrosion on the external surface of the flange and IGSCC in the weld HAZ. Note that the type 316 weld and the wrought stainless steel pipe section were unaffected by corrosion. 5×. More
Image
Published: 01 December 1992
Fig. 7 Intergranular corrosion at the external surface of the flange and IGSCC next to the flange fillet. 5×. More
Image
Published: 01 December 1992
Fig. 8 Intergranular corrosion at the external surface of the flange. The voids are the locations of the spalled grains. 50×. More
Image
Published: 01 December 1992
Fig. 6 Scanning electron micrograph showing intergranular corrosion and an associated fatigue crack at the wire joint. More
Image
Published: 15 January 2021
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. Original magnification: 200× More