Skip Nav Destination
Close Modal
By
M.E. Stevenson, M.E. Barkey, J.L. McDougall, E.R. Weishaupt
By
M.E. Stevenson, J.L. McDougall, K.G. Cline
By
Victor K. Champagne
By
Qiaoling Chu, Min Zhang, Yinni Chen
By
S.H. Magner, W.N. Weins
By
Durgam G. Chakrapani
By
George Hopple
By
Michelle Koul, Jennifer Gaies
By
J. Morrison, P.D. Martin
By
Charles E. Witherell
By
N.L. Baxter
By
Carl J. Czajkowski
Search Results for
installation torque
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 75
Search Results for installation torque
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fracture of High-Strength Screws During Installation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090929
EISBN: 978-1-62708-236-5
... Abstract Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload...
Abstract
Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload in the absence of gross defects or embrittlement. It was subsequently determined that a nonapproved lubricant had been used during installation. Tension preloads can be more than twice their normal level on lubricated fasteners because of reduced friction, and in this case, the preload was sufficient to fracture the screws. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001728
EISBN: 978-1-62708-236-5
... that failure was due to improper installation torqueing of the bolts. Aircraft components Aircraft Bolts Propellers Torque Steel Fretting wear Fatigue fracture Careful examination of flight log data, maintenance reports, accident reports, and statements of witnesses indicated...
Abstract
The propeller from a small private airplane came off in flight. The head ends of all six attachment bolts remained in the propeller hub when it was found. Two threaded shanks with nuts remained with the engine, while the remaining four shank ends with their nuts were missing. Parts available for examination, in addition to the hub and attachment bolts, were the two propeller blades and the engine crankshaft. The purpose of this examination was to determine the nature and probable cause of failure in the six attachment bolts. Indications of fatigue failure and wear were the major findings in visual and low power microscopic examination. Fracture surfaces indicated failure was initiated in the threads in four bolts and in the shanks in two. The group of four bolts failed primarily due to tensile loads, while the other two bolts failed primarily due to bending loads. It was concluded that failure was due to improper installation torqueing of the bolts.
Book Chapter
Failure Analysis of a Temporary Power Line Anchor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001766
EISBN: 978-1-62708-241-9
... in an action essentially identical to an auger type drilling process. It should be noted that, per the anchor manufacturer’s information regarding installation, up to 6,000 ft-lbf of installation torque is acceptable. Fig. 1 As-received photograph of the failed anchor and an exemplar anchor...
Abstract
During the installation of power transmission lines across a major interstate highway, a temporary anchor stabilizing one of the poles failed, resulting in the loss of the pole and the associated power lines. It also contributed to a single vehicle incident on the adjacent roadway. Post-failure analysis revealed that the fracture was precipitated by a preexisting weld-related crack. Closed form and numerical stress analyses were also conducted, with the results indicating that the anchor was installed properly within the parameters intended by the manufacturer.
Book Chapter
Metallurgical Failure Analysis of Titanium Wing Attachment Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... and service conditions can alter the frictional characteristics of the bolted joint components with time. Changes in materials and processes over time (e.g., lubricants such as MoS 2 and wet sealant composition) serve to further complicate the relationship between friction, installation torque, and bolt...
Abstract
Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt at the time of re-torque and at the time of initial torque application several years earlier.
Book Chapter
Failed Bolts From an Army Tank Recoil Mechanism
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001379
EISBN: 978-1-62708-215-0
... Abstract The heads of two AISI 8740 steel bolts severed while being installed into an Army tank recoil mechanism. Both broke into two pieces at the head-to-shank radius and the required torque value had not been attained nor exceeded prior to the failure. A total of 69 bolts from inventory...
Abstract
The heads of two AISI 8740 steel bolts severed while being installed into an Army tank recoil mechanism. Both broke into two pieces at the head-to-shank radius and the required torque value had not been attained nor exceeded prior to the failure. A total of 69 bolts from inventory and the field were tested by magnetic particle inspection. One inventory bolt failed because of a transverse crack near the head-to-shank radius. It was deduced that either a 100% magnetic particle inspection had not been conducted during bolt manufacturing, or the crack went undetected during the original inspection. Optical and electron microscopy of the broken bolts revealed topographies and the presence of black oxide consistent with quench cracking. The two bolts failed during installation due to the presence of pre-existing quench cracks. Recommendations to prevent future failures include: ensuring that 100% magnetic particle inspections are conducted after bolts are tempered; using dull cadmium plate or an alternative to the electrode position process, such as vacuum cadmium plate or ion-plate or ion-plated aluminum, to mitigate the potential for delayed failures due to hydrogen embrittlement or stress-corrosion cracking; ensuring that the radius at the shoulder/shank interface conforms to specifications; and replacing all existing bolts with new or reinspected inventory bolts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048630
EISBN: 978-1-62708-217-4
... hydrogen embrittlement. The bolts broke at the junction of the head and shank. The nuts were, theoretically, installed fingertight. The failure was attributed to hydrogen embrittlement that had not been satisfactorily alleviated by subsequent baking. The presence of burrs on the threads prevented assembly...
Abstract
Two clevis-head self-retaining bolts used in the throttle-control linkage of a naval aircraft failed on the aircraft assembly line. Specifications required the bolts to be heat treated to a hardness of 39 to 45 HRC, followed by cleaning, cadmium electroplating, and baking to minimize hydrogen embrittlement. The bolts broke at the junction of the head and shank. The nuts were, theoretically, installed fingertight. The failure was attributed to hydrogen embrittlement that had not been satisfactorily alleviated by subsequent baking. The presence of burrs on the threads prevented assembly to finger-tightness, and the consequent wrench torquing caused the actual fractures. The very small radius of the fillet between the bolt head and the shank undoubtedly accentuated the embrittling effect of the hydrogen. To prevent reoccurrence, the cleaning and cadmium-plating procedures were stipulated to be low-hydrogen in nature, and an adequate post plating baking treatment at 205 deg C (400 deg F), in conformity with ASTM B 242, was specified. A minimum radius for the head-to-shank fillet was specified at 0.25 mm (0.010 in.). All threads were required to be free of burrs. A 10-day sustained-load test was specified for a sample quantity of bolts from each lot.
Book Chapter
Stress-Corrosion Cracking of Pitostatic System Connectors
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006409
EISBN: 978-1-62708-217-4
... Abstract Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal...
Abstract
Pitostatic system connectors were being found cracked on several aircraft. Two of the cracked connectors made of 2024-T351 aluminum alloy were submitted for failure analysis. The connectors had cut pipelike threads that were sealed with Teflon-type tape when installed. Longitudinal cracks were located near the opening of the female ends of each connector. A cross section showed intergranular cracking with multiple branching in one connector. Scanning electron microscopy (SEM) showed intergranular cracking and separation of elongated grains. A cross section of connector threads showed an incomplete thread form resulting from improper tapping. It was concluded that the pitostatic system connectors failed by SCC. The stress was caused by forcing the improperly threaded female nut over its fully threaded male counterpart to effect a seal. The one connector tested for chemical composition was not made of 2024 aluminum alloy as reported but of 2017 aluminum. It was recommended that the pitostatic system connector manufacturing process be revised to produce full-depth threads rather than pseudo pipe threads. Wall thickness should be increased to increase the hoop stress bearing area if pipe threads were to be used. A determination of proper torque values for tightening the connectors was suggested also.
Book Chapter
Failure Analysis of Steady Clamps Used in Electrified Railway
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... Abstract Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led...
Abstract
Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure.
Book Chapter
Hydrogen-Stress Cracking of Type 410 Stainless Steel Splice Case Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... Sulfurization 410 UNS S41000 Hydrogen damage and embrittlement Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. The torque applied to these bolts can...
Abstract
Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless steel would serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb).
Book Chapter
Metallographic Characterization of Stress Corrosion Cracking in High Strength Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001721
EISBN: 978-1-62708-225-9
... easily have been compromised when the torque was applied to the bolts. Thus all three factors for the possibility of SCC are present for the bonnet screws. The main reason for the failures of the valve bonnet screws in valves installed after 1988 is believed to be due to increased bolt torque...
Abstract
Diagnosis of environmentally induced failures is greatly facilitated by metallographic analysis. As an example, a failure analysis of ASTM A574 material grade bolts is presented. The bolts served as bonnet screws in underground valves and failed due to stress-corrosion cracking. Metallographic methods were used to diagnose and provide solutions for the service failure. Included are photos showing crack propagation morphology and fracture surface appearance.
Book Chapter
Hydrogen Embrittlement of Alloy Steel Fasteners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048634
EISBN: 978-1-62708-225-9
... torqued to 80% of rated ultimate tensile strength into a predrilled aluminum alloy plate. This high torque (greater than normal installation) was used to speed the failure rate of the fasteners. After 335 h, a head was lifted with fingernail pressure from the shank of a fastener. Another was removed...
Abstract
During an inspection of a structure two weeks after assembly, the heads of several cadmium-plated AISI 8740 steel fasteners were found to be completely separated from their respective shanks. SEM examination of the fracture surfaces revealed a brittle, intergranular fracture mode, indicating hydrogen embrittlement. An investigation was conducted to determine the extent of hydrogen embrittlement in the various lots of cadmium-plated 8740 steel fasteners. It was found that hydrogen embrittlement was caused by the use of a bright, impervious cadmium electroplate that hindered diffusion of mobile hydrogen outward from the surface of the pin. After the cadmium layer was removed, the mobile hydrogen contained on the surface of the steel and in the electroplated deposit was released, and the embrittlement problem was alleviated. To prevent reoccurrence, the bright cadmium layer was stripped from the pins, which were then baked and repeated with a dull, porous cadmium layer that allowed outward diffusion of hydrogen. The pins were baked again after deposition of the porous cadmium layer. This eliminated the problem.
Book Chapter
Environmentally-Induced Fracture of Type 410 Martensitic Stainless Steel Self-Drilling Tapping Screws
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001094
EISBN: 978-1-62708-214-3
.... Circumstances Leading to Failure The screws were subjected to retorquing tests within 2 weeks after installation. Several screws fractured in a brittle manner, substantially below the rated torque loading. Pertinent Specifications The newly developed cadmium-coated type 410 martensitic stainless...
Abstract
Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed the outer skin of a high-rise building. Fractographic and metallographic examination showed that the fractures occurred in a brittle manner from intergranular crack propagation. Laboratory and simulated environmental tests showed that an aqueous environment was necessary for the brittle fracture/cracking phenomenon. The cracks were singular and intergranular with little branching. Secondary subsurface cracks suggested possible hydrogen embrittlement. The 410 screws had been introduced to replace conventional case-hardened carbon steel screws that conform to SAE specification J78. Carbon steel screws had a proven record of acceptable performance for the intended application. It was recommended that use of the 410 screws be discontinued in preference to the case-hardened carbon steel screws.
Book Chapter
Shear Band Failures in Threaded Titanium Alloy Fasteners
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001660
EISBN: 978-1-62708-236-5
... of fastener is designed so that during installation, the nuts (collars) separate in half (torque off) leaving a portion of the collar tight against the bolt (pin) at a specified torque ( Figures 1 ). Pins from three different commercial sources were evaluated in the present investigation and are referred...
Abstract
Failure analysis was performed on threaded Ti-6Al-4V fasteners that had fractured in the threads during installation. Scanning electron microscopy (SEM) and optical metallography revealed that the fractures initiated in circumferential shear bands present at the thread roots. The fractures propagated by microvoid coalescence typical of that observed in notched tensile specimen fractures of the same material. For comparison, Ti-6Al-4V fasteners from various commercial sources were tested to failure in uniaxial tension and examined in the SEM. In all cases, the fracture appearances were similar to that exhibited by the fasteners that failed during installation. In addition, results of optical microscopy indicated that the geometry and extent of the shear bands appeared to depend on the fabrication process employed by the individual manufacturers. Causes of shear band formation are discussed along with potential methods to eliminate these microstructural in homogeneities.
Book Chapter
An Environmentally Assisted Cracking Evaluation of UNS C64200 (Al–Si–Bronze) and UNS C63200 (Ni–Al–Bronze)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high. union nut corrosion ammonia installation torque bronze crack...
Abstract
An air system on a marine platform unexpectedly shut down due to the failure of a union nut, which led to an investigation to quantify the material limitations of bronze alloys in corrosive marine environments. The study focused on two alloys: Al-Si bronze, as used in the failed component, and Ni-Al bronze, which has a history of success in naval applications. Material samples were examined using chemical analysis, SEM imaging, and corrosion testing. Investigators also analyzed precracked tension specimens, exposing them to different conditions to quantify stress intensity thresholds for environmentally assisted cracking. Al-Si bronze was found to be susceptible to subcritical intergranular cracking in air and seawater, whereas Ni-Al bronze was unaffected. Both materials, however, are susceptible to cracking in the presence of ammonia, although the subcritical crack growth rate is two to three times higher in Ni-Al bronze. Based on the results of this work, the likelihood of subcritical cracking under various conditions can be reasonably estimated, which, in the case at hand, proved to be quite high.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... with an installation torque range of 7.3 to 8.5 N · m (65 to 75 lbf · in.). Dimpled fracture features indicated that the head cracks were caused by overload; however, chemical analyses, hardness tests, and microstructural examination showed that the fasteners were within specifications. Unused fasteners and nuts from...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... being installed on type 7075-T6 fasteners with an installation torque range of 7.3 to 8.5 N · m (65 to 75 in. · lb). Dimpled fracture features indicated that the head cracks were caused by overload; however, chemical analyses, hardness tests, and microstructural examination showed that the fasteners...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Book Chapter
Investigation of a Failed Stainless Steel Spindle Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... ), the nut having been driven against it with sufficient force to leave a deep imprint, which may indicate that a torque well in excess of that specified was used when installing the nuts. What was assumed to be the corresponding washer from the unbroken stud was not damaged in this fashion. When an attemp...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Book Chapter
Fracture of Alloy Steel Cap Screws in a Refrigeration Compressor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
... operated continuously for about 1000 h since its original installation, at which time it experienced a bearing failure due to inadequate lubrication. This occurrence was unrelated to the failure under discussion, but required disassembly of the impeller and diffusion vane components. In this compressor...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Book Chapter
Case Studies from 25 Years of Troubleshooting Vibration Problems
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... information to an antenna and subsequently to an FM receiver-demodulator. The experimental setup was calibrated by putting one end of the drive shaft in a vice and applying 100 lbf torque to the other end. While the 100 lbf torque was applied, the output of the demodulator was measured with a voltmeter...
Abstract
Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems.
Book Chapter
Failure of a 20 Ton Polar Crane Motor by Bolt Fatigue
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001095
EISBN: 978-1-62708-214-3
... the result of insufficient torque on the bolts. Bending fatigue ASTM A574 UNS K03104 Fatigue fracture Background A 20 ton polar crane motor fell during a 3400 kg (7500 lb) lift, narrowly missing personnel working beneath the crane. Witnesses reported that the motor fall was preceded...
Abstract
A 20 ton polar crane motor fell during a 3400 kg (7500 lb) lift, narrowly missing personnel working beneath the crane. Witnesses reported that the motor fall was preceded by a falling oil mass, and it was believed that the motor was intact prior to impact. The maintenance history of the crane showed that the motor had been removed, repaired, and reinstalled 2 years prior to the failure. Observations of oil leakage were noted yearly up to the failure. The motor casing was held onto the adapter plate by eight 14-20 UNC x 25 mm (1 in.) long hex socket cap screws. Examination of the motor adapter plate, motor casing shards (aluminum), the gear side of the motor housing, and seven fractured cap screws (ASTM A574) showed that the motor casing was intact at the time of “uncontrolled descent” and that the screws had failed by high nominal stress reverse bending load fatigue, which was probably the result of insufficient torque on the bolts.
1