Skip Nav Destination
Close Modal
Search Results for
industry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 364 Search Results for
industry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Fatigue Failure of Extrusion Dies: Effect of Process Parameters and Design Features on Die Life
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Failed dies collected from local extrusion industry
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... Abstract This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Image
Published: 01 January 2002
Fig. 2 Remains surrounding an industrial facility after a fire and explosion
More
Image
in Failure Analysis of Gears and Reducers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 3 A 550 kW (750 hp) industrial reducer with a pair of double helical gears on the intermediate shaft
More
Image
in Exfoliation Corrosion of HE.15 Aluminium Alloy
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 3 Attack on section exposed to industrial environment.
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
... Abstract The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result...
Abstract
The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001062
EISBN: 978-1-62708-214-3
Abstract
The causes of internal cracking that occurred in 9% Ni steel castings during manufacture were investigated using a series of eight laboratory castings containing varying amounts of molybdenum. The effect of mold thickness was also investigated. The laboratory castings were subjected to three-point bend testing, and fracture surfaces were examined using SEM fractography, metallography, and depth analysis (SIMS) of the fracture surface. The cracks were found to originate at austenitic grain boundaries that coincided with primary dendrite interfaces. The cracking was attributed to a decrease in grain-boundary cohesion resulting from sulfur segregation. Addition of molybdenum proved effective in preventing cracking. The molybdenum promoted MnS precipitation in the grain and preferentially segregated to the interfaces.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006913
EISBN: 978-1-62708-395-9
... of plastics. It provides the reader with sufficient information to select the appropriate electrical test(s) for a specific application. The tests covered in this article are widely used in industry to determine the electrical properties of insulating materials, particularly plastics. The article lists...
Abstract
This article addresses electrical testing and characterization of plastics and presents a number of techniques for evaluating the electrical properties of insulating materials, with a special focus on plastics, accompanied by a list of the electrical properties of different types of plastics. It provides the reader with sufficient information to select the appropriate electrical test(s) for a specific application. The tests covered in this article are widely used in industry to determine the electrical properties of insulating materials, particularly plastics. The article lists and defines terms used in connection with testing and specification of plastics for electrical applications.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001323
EISBN: 978-1-62708-215-0
Abstract
Original carbon steel and subsequent replacement austenitic stainless steel superheater tube U-bend failures occurred in a waste heat boiler. The carbon steel tubes had experienced metal wastage in the form of caustic corrosion gouging, while the stainless steel tubes failed by caustic-induced stress-corrosion cracking. Sodium was detected by EDS in the internal deposits and the base of a gouge in a carbon steel tube and in the internal deposits of the stainless steel tube. The sodium probably formed sodium hydroxide with carryover moisture and caused the gouging, which was further aggravated by the presence of silicon and sulfur (silicates and sulfates). It was recommended that the tubes be replaced with Inconel 600 or 601, as a practical option until the carryover problem could be solved.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001388
EISBN: 978-1-62708-215-0
Abstract
JIS SCM435 steel bolts that connected the slewing ring to the base carrier on a truck crane failed during the lifting of steel piles. The bolts were double-ended stud types and had been in operation for 5600 h. Failure occurred in the root of the external thread that was in contact with the first internal thread in the slewing ring. Examination of plastic carbon replicas indicated that failure was the result of fatigue action. Failure was attributed to overloading during service and increased stress concentration on a few bolts due to nonuniform separations around the slewing ring. A design change to achieve equal separation between bolt holes was recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
... , ASM International, 2002, p 1013–1018. The authors thank Dr. F. Inada (Central Research Institute of Electric Power Industry), Dr. T. Yamagata (Niigata University), and Dr. K. Fujisawa (University of Florida) for their help during the course of this work. The cooperation of Prof. S. Hattori (Fukui...
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001582
EISBN: 978-1-62708-233-4
Abstract
This article discusses the failure of cylinder clamping rods in single cylinder diesel engines. The AISI 4140 hardened and tempered steel clamping rods were failing after 200 to 250 h of operation. The fatigue failures initiated at the root of the last thread on the clamping rod that was engaged in a blind hole in the cylinder block. The failures were caused by loose tolerances on the threads that resulted in a non-uniform distribution of load. The load was concentrated on the last threads to engage, thus causing fatigue crack nucleation at the thread root and propagation until the rod broke by overload. Changing the tolerance on the threads virtually eliminated the fatigue problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001615
EISBN: 978-1-62708-235-8
Abstract
Carbon steel axle forgings were rejected due to internal cracks observed during final machining. To determine the cause of the cracks, the preforms of the forging were analyzed in detail at each stage of the forging. The analysis revealed a large central burst in the intermediate stage of the forging preform, which subsequently increased in the final stage. A high upset strain during forging, especially in the final stage, accentuated the center burst by high lateral flow of the metal. It was concluded that the center burst of the axle forging resulted from a high concentration of nonmetallic inclusions in the central portion of the raw bar stock rather than the usual problem of improper forging temperature. Strict control over the inclusion content in the raw material by changing the vendor eliminated the problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001612
EISBN: 978-1-62708-218-1
Abstract
The fan used to cool a diesel engine fractured catastrophically after approximately 100 h of operation. The fan failed at a spider, which was resistance spot welded to a shim placed between two circular spiders of 3 mm thickness. The detailed analysis of the fracture indicated that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture during operation. The propensity to crack initiation and failure was accentuated by improper cleaning of the surfaces prior to welding and to inadequate nugget-to-sheet edge distance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001616
EISBN: 978-1-62708-229-7
Abstract
Severe pitting corrosion of a carbon steel tube was observed in the air preheater of a power plant, which runs on rice straw firing. Approximately 1450 tubes were removed from Stage 3 of the preheater (air inlet and flue gas outlet) due to corrosion and local bursting. Samples from Stage 2 (where corrosion was low) and Stage 3 (severe corrosion) were taken and subjected to visual inspection, SEM, x-ray diffraction, microhardness measurement, and chemical and microstructural analysis. It was determined that extended non-operation of the plant resulted in the settlement of corrosive species on the tubes in Stage 3. The complete failure of the tube occurred due to diffusion of these elements into the base metal and precipitation of potassium and chlorine compounds along the grain boundaries, with subsequent dislodging of grains. The nonmetallic inclusions acted as nucleating sites for local pitting bursting. Nonuniform heat transfer in Stage 3 operation accelerated the selective corrosion of front-end tubes. The relatively high heat transfer in this stage resulted in condensation of some corrosive gases and consequent corrosion. Continuous operation of the plant with some precautions during assembly of the tubes reduced the corrosion problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001613
EISBN: 978-1-62708-235-8
Abstract
The electroplated tappet adjusting screws used in diesel engines failed during initial bend testing. The analysis of the failure showed that the fracture was nucleated from the subsurface of the screw. The fracture surface was intergranular at the ID and OD region and microvoid coalescence in the center. The improper baking after electroplating of the screw led to H2-induced blistering/cracking. The high strength of the threaded region of the adjusting screw increased the failure propensity.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001576
EISBN: 978-1-62708-219-8
Abstract
Macrofractographs of the fracture surface from a multibladed fan showed that cracks started at the corner where bending stress was concentrated and propagated through the blade by fatigue. Peak stress at the monitoring position was less than 10 MPa. To simulate crack growth, the rotor was repeatedly deformed by a hydraulic fatigue tester. Comparison of striations of the failed blade with that of the tested one revealed the failed blade was loaded with more than 30 MPa of stress. These tests confirmed that the rotor and blades had sufficient strength to withstand up to 3x the stress of normal operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001738
EISBN: 978-1-62708-220-4
... ( 1990 ) p. 545 7. Steen M. , Ghent State University, doctoral thesis ( 1986 ) 8. Heerings J. , TNO Industrial Research, unpublished research ( 1990 ). 9. Barr K.D. , INCO-report for DSM Research ( 1990 ) Selected Reference Selected Reference • Creep...
Abstract
During a planned shut-down in 1990 it appeared that the bottom manifold parts made of wrought Incoloy 800H had undergone diametrical expansion of up to 2% due to creep. Further, cracking at the outer diam was found. It was decided to replace these parts. Microscopical investigations showed that the cracking could not be caused by creep. It was found that the cracking was confined to a 4-mm deep coarse-grained zone (ASTM 0-1) at the outer diameter. The cracking appeared to be caused by strain-induced intergranular oxidation. When the cracks reached the fine-grained material, the oxidation-cracks stopped. To determine the residual creep life of the sound (non-cracked) bottom manifold material, iso-stress creep tests were performed. It was found that tertiary creep started at 7% strain. The time-to-rupture was greater than 100,000 h. It was concluded that the bottom manifold (and thus the furnace) could be used safely during the foreseen production period.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... Abstract Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
1