Skip Nav Destination
Close Modal
Search Results for
induction heating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 102 Search Results for
induction heating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Hot Cracking in Inductively Bent Austenitic Stainless Steel Pipes
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
... was revealed after etching with 1% nital. The presence of a crack, with typical oxides found in seams at its root, was disclosed by an unetched section through the shaft in an area unaffected by induction heating. The etched samples revealed similar decarburization as was noted on the fracture surface...
Abstract
Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual and stereo-microscopic examination. One tooth on each shaft was found to be broken off. It was revealed by metallographic examination of an unetched section through the fractured tooth that the fracture surface was concave and had an appearance characteristic of a seam. Partial decarburization of the surface was revealed after etching with 1% nital. The presence of a crack, with typical oxides found in seams at its root, was disclosed by an unetched section through the shaft in an area unaffected by induction heating. The etched samples revealed similar decarburization as was noted on the fracture surface of the tooth. It was concluded that the seam had been present before the shaft was heat treated and these seams acted as stress raisers during induction hardening to cause the shaft failure. It was recommended that the specifications should specify that the shaft material should be free of seams and other surface imperfections.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048791
EISBN: 978-1-62708-234-1
... Abstract Linear indications on the outer surface of a cross in a piping system were revealed by dye-penetrant examination. The cross was specified to be SA403 type WP 304 stainless steel. The cross had been subjected to induction-heating stress improvement. The linear indications on the cross...
Abstract
Linear indications on the outer surface of a cross in a piping system were revealed by dye-penetrant examination. The cross was specified to be SA403 type WP 304 stainless steel. The cross had been subjected to induction-heating stress improvement. The linear indications on the cross were located in wide bands running circumferentially below the cross-to-cap weld and above the cap-to-discharge-pipe weld. The material was found to conform to the requirements both in terms of hardness and strength. Intergranular cracks filled with oxide were observed on metallographic analysis of a sectioned and oxalic acid etched sample. The grain size was found to exceed the ASTM standard. No indications of sensitization were observed during testing with practice A of ASTM A 262. Definitive evidence of contaminants to support SCC as the failure mechanism was not disclosed during analysis. It was concluded that overheating or burning of the forging, which classically results in large grain size, intergranular fractures, and fine oxide particles dispersed throughout the grains was the possible reason for the failure.
Image
in Brittle Fracture of Splines on Induction-Hardened 1151 Steel Rotor Shafts Caused by a Seam in the Material
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
surface. Sections B-B and C-C: Micrographs of section through seam showing regions where metal was affected and not affected by induction heating
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... Fig. 1 Photograph of bent pipe section Fig. 2 Pipe bending process with high frequency inductive heating and subsequent water quench Fig. 3 Photograph of pipe section in as received condition, as affected by surface cracking Fig. 4 Closer view of Fig. 3 . Gaping...
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
... of nearly 1000 °C during the induction heating, at which point the low melting metal or alloy got into active materials and began to melt and evaporate at the attached point; at the same time that the surface tension was decreased, the attached area spread. The copper entrapment in the steel during...
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
... hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening...
Abstract
One percent Cr-Mo low alloy constructional steel is widely used for high tensile applications, e.g., for manufacture of high tensile fasteners, heat treated shafts and axles, for automobile applications such as track pins for high duty tracked vehicles etc. The steel is fairly through hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening of the surface. Indifferent results were obtained in induction hardening; cracks were noticed, and patchy hardness figures were obtained on the final product in several batches. Metallographic examination of transverse sections through the defective areas showed decarburization to varying degrees, i.e., from partial to total decarburization. Observations suggested the defects originated at the stages of ingot making and rolling. This was apparently the reason for complete decarburization of the area with original surface defect which opened up further in the oxidizing atmosphere of the furnace with low melting clinkers from scale and furnace lining filling up the crevice of the original defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001502
EISBN: 978-1-62708-234-1
... was activated by a nonfunctioning induction hardening coil that did not or was not allowed to harden the midprofile of several teeth. Hardness Induction hardening Mining Motor trucks Spur gears 4147H UNS H41470 Heat treating-related failures Spalling wear A portion of two large spur tooth...
Abstract
A portion of two large spur tooth bull gears made from 4147H Cr-Mo alloy steel that had spalling teeth was submitted for evaluation. The gears were taken from a final drive wheel reduction unit of a very large open-pit mining truck. The parts had met the material and initial heat treat hardening specifications. The mode of failure was tooth profile spalling. By definition, spalling originates at a case/core interface or at the juncture of a hardened/nonhardened area. The cause of this failure was either insufficient or no induction-hardened case along the active profile. The cause was activated by a nonfunctioning induction hardening coil that did not or was not allowed to harden the midprofile of several teeth.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source...
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... volumes of the ASM Handbook series: Steel Heat Treating Fundamentals and Processes , Volume 4A (2013); Induction Heating and Heat Treatment , Volume 4C (2014); Heat Treating of Irons and Steels , Volume 4D (2014); and Heat Treating of Nonferrous Alloys , Volume 4E (2016...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001598
EISBN: 978-1-62708-232-7
... cumulative service at elevated temperature. A recommendation was made to implement a support for the conical section of the CIM and to increase the wall thickness of the drain tube. Thus, the possibility of drain tube misalignment in the induction coils and localized over heating will be minimized...
Abstract
The metallurgical condition of a cylindrical induction melter (CIM) vessel was evaluated after approximately 375 h of operation over a two-year span at temperatures between 1400 to 1500 deg C. Wall thinning and significant grain growth was observed in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with localized overheating and creep. The observed degradation resulted from cumulative service at elevated temperature. A recommendation was made to implement a support for the conical section of the CIM and to increase the wall thickness of the drain tube. Thus, the possibility of drain tube misalignment in the induction coils and localized over heating will be minimized. In addition, the use of grain stabilized Pt/Rh alloy should be evaluated as a method to prevent grain growth.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... concentration produced by the large change in radius. There is also a change in geometry which must be handled by the induction heating and quenching unit. Figure 3 shows a typical flange radius fracture. The fracture starts perpendicular to the axle surface. However, as the crack front nears the back surface...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to be made of 1045 steel and to be heat treated to a hardness of 245 HB. Investigation The pinion steel was analyzed and found to have the following composition: This composition was considered to be a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction...
Abstract
A cast countershaft pinion on a car puller for a blast furnace broke after one month of service; expected life was 12 months. The pinion was specified to be made of 1045 steel heat treated to a hardness of 245 HRB. The pinion steel was analyzed and was a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening of the tooth surfaces. Contributing factors included uneven loading because of misalignment and stress concentrations in the tooth roots caused by tool marks. Greater strength was provided by oil quenching and tempering the replacement pinions to a hardness of 255 to 302 HRB. Machining of the tooth roots was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
... years of service, while its predecessor lasted over 40 years. The subsequent failure investigation determined that the nickel-aluminum bronze impeller was not properly heat treated, which made the impeller susceptible to aluminum dealloying. The dealloying corrosion was exacerbated by erosion because...
Abstract
A brackish water pump impeller was replaced after four years of service, while its predecessor lasted over 40 years. The subsequent failure investigation determined that the nickel-aluminum bronze impeller was not properly heat treated, which made the impeller susceptible to aluminum dealloying. The dealloying corrosion was exacerbated by erosion because the pump was slightly oversized. The investigation recommended better heat treating procedures and closer evaluation to ensure that new pumps are properly sized.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
... to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove...
Abstract
The main shaft in a locomotive turbocharger fractured along with an associated bearing sleeve. Visual and fractographic examination revealed that the shaft fractured at a sharp-edged groove between two journals of different cross-sectional area. The dominant failure mechanism was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove because of stress concentration.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... induction coil was used to encompass the region of the weld and the adjacent hardened HAZ, thus avoiding the need to dismantle the arm, which would have been required for furnace heat treatment. As a result of tempering, there were no additional failures. Analysis of these castings revealed...
Abstract
A roadarm for a tracked vehicle failed during preproduction vehicle testing. The arm was a weldment of two cored low-alloy steel sand castings specified to ASTM A 148, grade 120–95. A maximum carbon content of 0.32% was specified. The welding procedure called for degreasing and gas metal arc welding; neither preheating nor postheating was specified. The filler metal was E70S-6 continuous consumable wire with a copper coating to protect it from atmospheric oxidation while on the reel. Analysis of the two castings revealed that the carbon content was higher than specified, ranging from 0.40 to 0.44%. The fracture occurred in the HAZ , where quenching by the surrounding metal had produced a hardness of 55 HRC. Some roadarms of similar carbon content and welded by the same procedure had not failed because they had been tempered during a hot-straightening operation. Brittle fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
.... Design features that concentrate stress include ends of keyways, edges of press-fitted members, fillets at shoulders, and edges of oil holes. Stress concentrators produced during fabrication include grinding damage, machining marks or nicks, and quench cracks resulting from heat treating operations...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
... marks or nicks, and quench cracks resulting from heat treating operations. Frequently, stress concentrators are introduced during hot or cold forming of shafts; these include surface discontinuities, such as laps, seams, pits and forging laps, and internal imperfections, such as bursts. Internal...
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001508
EISBN: 978-1-62708-236-5
... Abstract New type 321 corrosion-resistant steel heat shields were cracking during welding operations. A failure analysis was performed. The cause was found to be chloride induced stress-corrosion cracking. Packaging was suspected and confirmed to be the cause of the chloride contamination...
Abstract
New type 321 corrosion-resistant steel heat shields were cracking during welding operations. A failure analysis was performed. The cause was found to be chloride induced stress-corrosion cracking. Packaging was suspected and confirmed to be the cause of the chloride contamination. A contributing factor was the length of time spent in the packaging, 21 years.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
1