1-20 of 82 Search Results for

induction hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... that no suspension was involved Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel...
Image
Published: 01 June 2019
Fig. 1 Induction-hardened 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B), and decarburized More
Image
Published: 01 January 2002
Fig. 4 Subsurface fatigue origins (at arrows) in an induction-hardened 8.25 cm (3.25 in.) high-manganese medium-carbon steel axle laboratory tested in rotating bending. Note absence of beach marks. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 19 Surface of a torsional-fatigue fracture in an induction-hardened 1041 (1541) steel shaft. The shaft fractured after 450 hours of endurance testing. 1 1 4 × More
Image
Published: 30 August 2021
Fig. 36 Induction-hardened grade 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B More
Image
Published: 30 August 2021
Fig. 6 Seam in an induction-hardened 1151 steel shaft. (a) Unetched. Original magnification: 65×. (b) 1% nital etch. Original magnification: 65×. The etched section in (b) shows partial decarburization, indicating that the seam was present before heat treatment. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
... Abstract Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001502
EISBN: 978-1-62708-234-1
... hardening specifications. The mode of failure was tooth profile spalling. By definition, spalling originates at a case/core interface or at the juncture of a hardened/nonhardened area. The cause of this failure was either insufficient or no induction-hardened case along the active profile. The cause...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
... hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
... Abstract The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
... Abstract Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired hardenability...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047121
EISBN: 978-1-62708-218-1
... of 40 to 46 HRC. Visual inspection and 100x micrographs showed the fracture surface as having a complex type of fatigue failure initiated from subsurface inclusions in the transition zone between the induction-hardened surface and the softer core. The fractured shaft was examined for chemical...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... in comparatively short journal pins at high stresses. This crankshaft fracture was an example of the damage that is caused or promoted neither by material nor heat treatment mistakes nor by defects of design or machining, but solely by overstressing. Crankshafts Induction hardening Torsional fatigue...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
... to abnormally high temperatures, increasing the amount of friction between the sleeve, bearing bush, and journal surface. The excessive heat also softened the induction-hardened case on the journal surface, decreasing its fatigue strength. Fatigue crack initiation occurred at the root fillet of the groove...
Image
Published: 01 June 2019
Fig. 1 Spur gear tooth, SAE 4147H, quenched and tempered to 311 HB, machined completely, induction hardened with a tooth space inductor by traversing one tooth space at a time. (a) Surface spalling along one tooth flank, (b) No hardened case on active profile of one side of the teeth. More
Image
Published: 30 August 2021
characteristics. (a) Case hardening. CHD, case-hardness depth. (b) Induction hardening. SHD, surface-hardness depth. Source: Ref 1 , 2 More
Image
Published: 30 August 2021
Fig. 13 (a) Axle shaft exhibiting flat fracture with three distinct fracture regions. (b) Intergranular fracture through the induction-hardened surface. Original magnification: 1000×. (c) Primarily dimple rupture within the intermediate fibrous zone. Original magnification: 1000×. (d) Cleavage More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... , 33 ). These are critical in determining the development of the white layer and the subsequent crack nucleation and wear debris formation. Work has shown that treatment of materials such as cast iron or stainless steel via techniques such as laser hardening ( Ref 34 , 35 ), induction hardening...