1-20 of 95 Search Results for

induction hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride...
Image
Published: 01 June 2019
Fig. 1 Induction-hardened 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B), and decarburized More
Image
Published: 01 January 2002
Fig. 6 Chevrons on the fracture surface of an induction-hardened axle fabricated from 1541 steel. The V-shaped chevrons point back to an initiation site marked by the arrow at the top of the figure. Component shows fatigue crack growth initiating at the arrow creating the circular-shaped More
Image
Published: 01 January 2002
Fig. 4 Subsurface fatigue origins (at arrows) in an induction-hardened 8.25 cm (3.25 in.) high-manganese medium-carbon steel axle laboratory tested in rotating bending. Note absence of beach marks. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 19 Surface of a torsional-fatigue fracture in an induction-hardened 1041 (1541) steel shaft. The shaft fractured after 450 hours of endurance testing. 1 1 4 × More
Image
Published: 01 January 2002
Fig. 91 Micrograph of induction-hardened AISI G-3500 gray iron illustrating crack propagation into the hardened case. 88×; 3% nital etch. Source: Ref 27 More
Image
Published: 01 January 2002
Fig. 27 Induction-hardened 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B), and decarburized More
Image
Published: 15 January 2021
Fig. 28 Surface of a torsional fatigue fracture in an induction-hardened 1041 (1541) steel shaft, which fractured after 450 h of endurance testing More
Image
Published: 15 January 2021
Fig. 28 Wear scar and wear debris from a 2 mm (0.08 in.) induction-hardened compacted graphite iron specimen after 72,000 impacts. Reprinted from Ref 36 with permission from Elsevier More
Image
Published: 15 January 2021
Fig. 29 Wear scar and wear debris from a 3 mm (0.12 in.) induction-hardened compacted graphite iron specimen after 72,000 impacts. Reprinted from Ref 36 with permission from Elsevier More
Image
Published: 15 January 2021
Fig. 31 Profile of wear scar on a compacted graphite iron specimen induction hardened to a depth of 2 mm (0.08 in.) after 72,000 impacts. Source: Ref 36 More
Image
Published: 15 January 2021
Fig. 32 Profile of wear scar on a compacted graphite iron specimen induction hardened to a depth of 3 mm (0.12 in.) after 72,000 impacts. Source: Ref 36 More
Image
Published: 15 January 2021
Fig. 7 Chevrons on the fracture surface of an induction-hardened axle fabricated from 1541 steel. The V-shaped chevrons point back to an initiation site marked by the arrow at the top of the figure. Component shows fatigue crack growth initiating at the arrow, creating the circular-shaped More
Image
Published: 15 January 2021
Fig. 4 Subsurface fatigue origins (at arrows) in an induction-hardened 8.25 cm (3.25 in.) high-manganese medium-carbon steel axle laboratory tested in rotating bending. Note absence of beach marks. Source: Ref 11 More
Image
Published: 30 August 2021
Fig. 6 Seam in an induction-hardened 1151 steel shaft. (a) Unetched. Original magnification: 65×. (b) 1% nital etch. Original magnification: 65×. The etched section in (b) shows partial decarburization, indicating that the seam was present before heat treatment. More
Image
Published: 30 August 2021
Fig. 36 Induction-hardened grade 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
... Abstract Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001502
EISBN: 978-1-62708-234-1
... hardening specifications. The mode of failure was tooth profile spalling. By definition, spalling originates at a case/core interface or at the juncture of a hardened/nonhardened area. The cause of this failure was either insufficient or no induction-hardened case along the active profile. The cause...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001260
EISBN: 978-1-62708-235-8
... hardening and heat treatment does not present any serious difficulty. Care is still required in processing to avoid decarburization. In an application of track pins for tracked vehicles, bars about 22 mm diam were required in heat treated and centerless-ground condition prior to induction hardening...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
... Abstract The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x...