Skip Nav Destination
Close Modal
Search Results for
incremental forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52 Search Results for
incremental forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... depth obtained by repeated computation of incremental crack depths using the actual loading history modified by a synthetic “fatigue meter”. These factors were then used with the accelerometer data from the crashed aircraft to estimate the development of the crack that had formed during service...
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... forming is an incremental forming process that uses a 3-D variation of basic rolling processes and combines rolling, shearing, and bending into one operation. It is similar to neither upsetting nor swaging. Essentially a point deformation metal forming process, flow forming results in a part having...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
.... Breakdown Panels Breakdown panels should be retained at buyoff for every critical part. Breakdown panels are from the draw die or first form station hit incrementally off of the bottom of the press stroke in addition to a fully bottomed panel. They help show how metal flows to produce the part...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
... results suggested a four-stage crack propagation history: (1)some initial period of sustained stress, or of high mean stress low amplitude fatigue, together with an environmental factor to account for the un-striated cleavage-plus-flutes increment; (2) a period of low cycle, high stress fatigue comprising...
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... separate the initiation stage into ( Ref 3 ): Accumulation of local irreversible plastic deformation Creation of microscopic flaws Growth and coalescence of flaws to form one or more macroscopic cracks Careful laboratory study of unnotched high-purity metals and alloys has shown...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... ): Accumulation of local irreversible plastic deformation Creation of microscopic flaws Growth and coalescence of flaws to form one or more macroscopic cracks Careful laboratory study of unnotched high-purity metals and alloys has shown that repeated plastic deformation can result in localization...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001309
EISBN: 978-1-62708-215-0
... unit on a tubular steel frame, as shown in Fig. 1 . For the conversion to a three-wheeled vehicle, the swing arm on the original motorcycle was cut and the cargo box frame was spliced to form a longer swing arm. The swing arm is connected to the main motorcycle frame through spring/shock units...
Abstract
Bending fatigue caused crack propagation and catastrophic failures at several locations near the welds on the low-carbon steel tubular cargo box frame of police three-wheel motorcycles. ANSYS finite element analysis revealed that bending stresses in some of the frame members were aggravated by poor detail design between vertical and horizontal tubes. Stresses observed in the ANSYS analysis were not sufficient to cause the onset of fatigue. However when compounded by stress concentration factors and in-service dynamic loading, the frame could have been regularly subjected to stresses over the fatigue limit of the material. A strain gage static loading test verified FEM results, and finite element techniques were applied in the design of reinforcing members to renovate the frames. Material properties were determined and welding procedures specified for the reinforcing members. Inspection intervals were devised to avoid future problems.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
... and proceeding inward ( Fig. 3 , 4 , 5 , 6 ). Branching is evident in Fig. 5 . Figure 6 shows the microstructure associated with a stress-corrosion crack. Both intergranular and transgranular forms of cracking were present. Cracks of various depths were observed in the tube—from shallow (<10% wall...
Abstract
Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits. Stress-corrosion cracking was shown to have caused the failure. The most probable corrosive was ammonia or an ammonium compound in the presence of oxygen and water. All of the tubes were replaced.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... temperature at which austenite begins to form on heating Ac3 temperature at which transformation of ferrite to austenite is completed on heating ABS acrylonitrile-butadiene-styrene ACI Alloy Casting Institute AES Auger electron spectroscopy AGMA American Gear Manufacturers Asso- ciation AISI American Iron...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
..., at the microstructure level), to crack propagation (microcracks grow and link up to form macrocracks), and eventually to fracture of the remaining ligament or cross section of the component (failure). Figure 1 depicts a simple schematic of this phenomenon as the number of equipment cycles increases. Fig. 1...
Abstract
This article offers an overview of fatigue fundamentals, common fatigue terminology, and examples of damage morphology. It presents a summary of relevant engineering mechanics, cyclic plasticity principles, and perspective on the modern design by analysis (DBA) techniques. The article reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview of high-cycle welded fatigue methods, cycle-counting techniques, and a discussion on ratcheting are also offered. A historical synopsis of fatigue technology advancements and commentary on component design and fabrication strategies to mitigate fatigue damage and improve damage tolerance are provided. Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... have undergone plastic deformation in the form of swelling, whereas the central tubular region would have remained undeformed because of its high yield strength. The two end cups (reinforced by double wall thickness) also would not have undergone any plastic deformation because of the low hoop stress...
Abstract
A copper condenser dashpot in a refrigeration plant failed prematurely. The dashpot was a long tubular component with a cup brazed at each end. Stereomicroscopic examination of the fracture surface at low magnification revealed a typical ductile mode of failure. The failure was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing. Hydrostatic testing at a pressure times greater than the maximum operating pressure prior to placing the component in service was also suggested.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... regarded as a pileup of edge dislocations. (b) Pileup against a boundary forming a crack. (c) Crack forming by movement of dislocations on two slip planes. (d) Crack formation at tilt boundary. Source: Ref 4 A second model ( Ref 15 , 16 ) for cleavage crack initiation involves the interaction...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001143
EISBN: 978-1-62708-229-7
... 671 654 Avg. Repair Cost/Outage 226,100 117,500 73,000 Est. Lost Power/Outage $2,307,700 $3,750,200 $3,411,400 One EPRI survey subdivided 314 blade failures by yearly increments of service and found that within the first two years of service life, one-third of the recorded...
Abstract
The assignment of financial liability for turbine blade failures in steam turbines rests on the ability to determine the damage mechanism or mechanisms responsible for the failure. A discussion is presented outlining various items to look for in a post-turbine blade failure investigation. The discussion centers around the question of how to determine whether the failure was a fatigue induced failure, occurring in accordance with normal life cycle estimates, or whether outside influences could have initiated or hastened the failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... in a two-phase microstructure. Fig. 3 Dislocation models for cleavage fracture. (a) Elastic crack regarded as a pileup of edge dislocations. (b) Pileup against a boundary forming a crack. (c) Crack forming by movement of dislocations on two slip planes. (d) Crack formation at tilt boundary. Source...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... MANUFACTURING (AM) refers to a group of free-form fabrication technologies that incrementally build up a solid part by computer-controlled deposition of material from a digital solid model. The technology is an outgrowth and broadening of rapid prototyping methods that were developed in the 1980s to accelerate...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... components, which is addressed in detail in Ref 1 , is not covered in this Volume. Tables 1 and 2 list some general types of macroscale and microscale fractographic features, which are described in more detail in this article. In summary form, the following are key features in distinguishing between...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.