Skip Nav Destination
Close Modal
Search Results for
hydrogen sulfide testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 94 Search Results for
hydrogen sulfide testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091358
EISBN: 978-1-62708-233-4
... acidic, containing citric and phosphoric acids and having a pH of 2.4 to 2.5. Investigation (visual inspection, chemical analysis, immersion testing in the soft drink, and 100x unetched micrographs) supported the conclusion that the failure was caused by the size and distribution of sulfide stringers...
Abstract
After about two years in service, a 303 stainless steel valve in contact with a carbonated soft drink in a vending machine occasionally dispensed a discolored drink with a sulfide odor. According to the laboratory at the bottling plant, the soft drink in question was strongly acidic, containing citric and phosphoric acids and having a pH of 2.4 to 2.5. Investigation (visual inspection, chemical analysis, immersion testing in the soft drink, and 100x unetched micrographs) supported the conclusion that the failure was caused by the size and distribution of sulfide stringers in the alloy used in the valve. Manganese sulfide stringers in the valve were exposed at end-grain surfaces in contact with the beverage. The stringers, which were anodic to the surrounding metal, were subject to corrosion, producing a hydrogen sulfide concentration in the immediately adjacent liquid. Recommendations included changing the valve material to type 304 stainless steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless...
Abstract
Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless steel would serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb).
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001235
EISBN: 978-1-62708-228-0
... temperatures may drop. This measure was ultimately recommended, deemed more effective and cheaper. Blistering Cracking (fracturing) Hydrogen sulfide Natural gas Pipelines Fe-0.22C Hydrogen damage and embrittlement A welded natural gas line of 400 mm O.D. and 9 mm wall thickness made...
Abstract
A welded natural gas line of 400 mm OD and 9 mm wall thickness made of unalloyed steel with 0.22C had to be removed from service after four months because of a pipe burst. Metallographic examination showed the pipe section located next to the gas entrance was permeated by cracks or blisters almost over its entire perimeter in agreement with the ultrasonic test results. Only the weld seam and a strip on each side of it were crack-free. Based on this investigation, the pipeline was taken out of service and reconstructed. To avoid such failures in the future, two preventative measures may be considered. One is to desulfurize the gas. Based on tests, however, the desulfurization would have to be carried very far to be successful. The second possibility is to dry the gas to such an extent as to prevent condensate, and this corrosion, from forming no matter how low winter temperatures may drop. This measure was ultimately recommended, deemed more effective and cheaper.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
... by fatigue cracking ( Fig. 1 ). Sulfide stress cracking is defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide (H 2 S). The cracking mode was ascertained through comparison of this failure to known laboratory tested...
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... small to reduce tension-test ductility, hydrogen-induced delayed fracture may occur. Although hydrogen embrittlement has been evaluated extensively, it takes on several forms. The various forms or manifestations of hydrogen embrittlement and the terminology associated with it can be very confusing...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... steels with tensile strengths of 1240 MPa (180 ksi) or more. A few parts per million of hydrogen dissolved in steel can cause hairline cracking and loss of tensile ductility. Even when the quantity of gas in solution is too small to reduce tension-test ductility, hydrogen-induced delayed fracture may...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001289
EISBN: 978-1-62708-215-0
... was made. Subsurface cracks were found to be zigzag and discontinuous as well as intergranular in nature. A mixed mode of fracture involving ductile and brittle flat facets was observed. Micropores and rod-shaped manganese sulfide inclusions were also noted. The material had a hydrogen content of 22 ppm...
Abstract
The repeated occurrence of random cracks in the fillet radius portion of low-alloy steel (38KhA) end frame forgings following heat treatment was investigated. Microstructural analyses were carried out on both the failed part and disks of the rolled bar from which the part was made. Subsurface cracks were found to be zigzag and discontinuous as well as intergranular in nature. A mixed mode of fracture involving ductile and brittle flat facets was observed. Micropores and rod-shaped manganese sulfide inclusions were also noted. The material had a hydrogen content of 22 ppm, and cracking was attributed to hydrogen embrittlement. Measurement of hydrogen content in the raw material prior to fabrication was recommended. Careful control of acid pickling procedures for descaling of the hot-rolled bars was also deemed necessary.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001165
EISBN: 978-1-62708-234-1
... of the “sulfate” found in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion. Graphitic corrosion Pump impellers Sulfides Gray iron Dealloying/selective leaching A Cast iron pump impeller showed strong corrosion after an operating period...
Abstract
After operating for six months, a pump impeller (of nickel-containing cast iron) showed considerable corrosion. Cross sections showed substantial penetration of the wall thickness without loss of material. The observed supercooled structure implied low strength but would not affect corrosion resistance. Etching of the core structure showed a selective form of cast iron corrosion (spongiosis or graphitic corrosion) which lowered the strength of the cast iron enough that a knife could scrape off a black powder (10.85% C, 1.8% S, 1.45% P). Analysis showed that some of the “sulfate” found in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... sustained over a six-week period in biologically active, wet, high-clay soil as a function of iron sulfide present under anaerobic conditions in laboratory tests. SRB, sulfate-reducing bacteria Sparging test cells with air caused a short burst of very severe corrosion accompanied by the oxidation...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... that are able to use hydrogen in their metabolism ( Ref 23 ). Severe corrosion cells develop as sulfide, produced by the microbial reduction of sulfate, combines with ferrous ions, released by the corrosion process, to produce insoluble black iron sulfides: (Eq 7) 4 Fe + SO 4 2 − + 8 H...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
... with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content...
Abstract
During natural gas drilling in the EMS region in 1956, considerable numbers of longitudinal cracks and transverse fractures occurred in the connecting pieces of the bore rods. The connectors were screwed onto the rods by means of a fine thread and tightly joined with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas was the cause of damage. Hydrogen liberated by reaction with the iron caused the formation of iron sulfide after penetration of the steel, which had an explosive effect during molecular separation under high pressure. This in turn caused the crack formation in conjunction with the external and residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001253
EISBN: 978-1-62708-235-8
... whose formation is caused by the precipitation of hydrogen 4 . Fig. 4 Section of surface of a crank arm after magnetic particle testing. 2 3 × Fig. 5 Same as Fig. 4 , etch: Copper ammonium chloride solution according to Heyn. 2 3 × Fig. 6 Fracture...
Abstract
Octagonal cast ingots weighing 6.5 tons and made of unalloyed heat treated steel CK 45 according to DIN 17200, and crankshafts forged from these ingots showed internal separations during ultrasonic testing. To determine the cause of defect, an ingot slice and a crank arm were examined metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force in the formation of primary grain boundary cracks in cast ingots.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001115
EISBN: 978-1-62708-214-3
... as a replacement. Connectors, corrosion Hydrogen sulfide, environment Oil field equipment, materials selection Pipe, corrosion Sour gas, environment Stress corrosion 9% Ni steel Hydrogen damage and embrittlement Background During a workover of an oil well, the 9% Ni steel production tubing...
Abstract
During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years in the well A representative failure, a circumferential fracture in a connection, was analyzed. Reported to be a hydril CS connection, the pin end parted near the last threads. The external surface exhibited mechanical damage marks from the fishing operation. No signs of external corrosion or damage were detected. Visual surface examination revealed shear lips at the outside pipe, indicating that the fracture initiated at the inside surface and grew across the wall. Longitudinal cross sections revealed heavy corrosion damage to the inside pipe surface. Metallographic examination indicated that the tubing failed as a result of severe weakening from internal corrosion. Gray-colored corrosion deposits, which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion. Chemical analysis of the base metal and corrosion deposits did not detect iron or nickel sulfides, however Replacement of the remaining pipe strings according to a scheduled program was recommended. Because 9% Ni steel was not available, 13% Cr martensitic stainless steel was recommended as a replacement.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
... pipe, both seamless and ERW, for the production tubing string in oil and gas wells. Typically, the wells are relatively low pressure and low temperature, and they produce water as well as hydrocarbons. Carbon dioxide and hydrogen sulfide are also common constituents of the produced fluids...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089793
EISBN: 978-1-62708-235-8
... of type II manganese sulfides, then cracking results. The presence of hydrogen in the weldment can also enhance the likelihood of cracking. In this case, the deposition of an unbalanced groove weld where rotation can occur around the root, together with the superimposition of thermal strains from the one...
Abstract
During the final shop welding of a large armature for a direct-current motor (4475 kW, or 6000 hp), a loud bang was heard, and the welding operation stopped. When the weld was cold, nondestructive evaluation revealed a large crack adjacent to the root weld. Investigation showed the main crack had propagated parallel to the fusion boundary along the subcritical HAZ and was associated with long stringers of type II manganese sulfide (MnS) inclusions. This supported the conclusion that the weld failed by lamellar tearing as a result of the high rotational strain induced at the root of the weld caused by the weld design, weld sequence, and thermal effects. Recommendations included removing the old weldment to a depth beyond the crack and replacing this with a softer weld metal layer before making the main weld onto the softer layer.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
...Abstract Abstract Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
..., hydrogen sulfide, carbon dioxide, and ammonia can be very corrosive environments. Another cause of inadvertent general corrosion is improper chemical cleaning using uninhibited acids, excessive temperatures, or prolonged contact time. Water used to wash fire-side deposits where high-sulfur fuel oil...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
...Abstract Abstract Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide...
Abstract
Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide precipitate was caused by overheat of the low sulfur steel, and an incipient melting of grain boundary junctions was caused by overheat of the ultra-low sulfur steel. The precipitates and incipient melting in these two failed crankshafts were observed during the examination. As expected, impact fractures from the low sulfur steel crankshaft contained planar dimpled facets along separated grain boundaries with a small spherical manganese sulfide precipitates within each dimple. In contrast, planar dimpled facets along separated grain boundaries of impact fractures from the ultra-low sulfur crankshaft steel contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets. Some of the facets were covered with nitrogen, boron, iron, and carbon film, while other facets were relatively free of such coverage. Results of experimental forging studies defined the times and temperatures required to produce incipient melting overheat and facets at grain boundary junctions of ultra-low sulfur AMS 6414 steels.