Skip Nav Destination
Close Modal
Search Results for
hot tearing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91 Search Results for
hot tearing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089551
EISBN: 978-1-62708-218-1
... Abstract A sand-cast medium-carbon steel heavy-duty axle housing, which had been quenched and tempered to about 30 HRC, fractured after almost 5000 h of service. Investigation (0.4x magnification) revealed that the fracture had been initiated by a hot tear that formed during solidification...
Abstract
A sand-cast medium-carbon steel heavy-duty axle housing, which had been quenched and tempered to about 30 HRC, fractured after almost 5000 h of service. Investigation (0.4x magnification) revealed that the fracture had been initiated by a hot tear that formed during solidification of the casting. The mass of a feeder-riser system located near the tear retarded cooling in this region, creating a hot spot. This supported the conclusion that the tear causing the fracture of the axle housing was formed during solidification by hindered contraction and was enlarged in service by fatigue. Recommendations were to change the feeder location to eliminate the hot spot and thus the occurrence of hot tearing.
Image
in Premature Torquing Failures of Cast A356 Aluminum Actuators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 4 SEM micrographs of area A in Fig. 3(a) , showing hot tear casting defect. (a) 41×. (b)126×.
More
Image
in Premature Torquing Failures of Cast A356 Aluminum Actuators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 5 SEM micrographs of area B in Fig. 3 , showing another hot tear casting defect. (a)37.8×. (b)126×.
More
Image
in Premature Torquing Failures of Cast A356 Aluminum Actuators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 7 EDX spectrum obtained in a hot tear zone of the fracture surface, using a windowless detector and a 20 kV electron beam.
More
Image
in Premature Torquing Failures of Cast A356 Aluminum Actuators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 8 EDX spectrum obtained in a hot tear zone of the fracture surface, using a windowless detector and a 5 kV electron beam.
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
... typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld...
Abstract
A fuel-nozzle-support assembly showed transverse indications after fluorescent liquid-penetrant inspection of a repair-welded area at a fillet on the front side of the support neck adjacent to the mounting flange. Visual examination disclosed an irregular crack. The crack through the neck was sectioned; examination showed that the crack had extended through the repair weld. The crack had followed an intergranular path. The crack was opened, and binocular-microscope examination of the fracture surface showed that the surface contained dendrites with discolored oxide films that were typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld was attributed to unfavorable welding practice that accentuated thermal contraction stresses and caused hot tearing. Recommendations involved use of a small-diameter welding electrode, a lower heat input, and deposition in shallow layers that could be effectively peened between passes to minimize internal stress.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001029
EISBN: 978-1-62708-214-3
... Fig. 1 Both sides of an as-received actuator casting. Arrow (b) indicates the hot tear cracks. Fig. 2 Crack (arrows) in the casting that developed during torque testing. 1.1×. Fig. 3 (a) SEM micrograph showing the over all fracture surface in the crack initiation area. 7.6...
Abstract
Two investment-cast A356 aluminum alloy actuators used for handles on passenger doors of commercial aircraft fractured during torquing at less than the design load. Visual examination showed that cracking had occurred through a machined side hole. Fractography revealed that the cracks originated in hot tear locations in the castings. Microprobe analysis of fracture surfaces in the hot tear region indicated a much higher silicon-to-aluminum ratio compared with the overload fracture area. No microstructural anomalies related to the failure were found during metallographic examination. It was concluded that the strength of the castings had been compromised by the presence of the casting defects. Modification of the gating system for casting was recommended to eliminate the hot tear zone. It was also suggested that the balance of the castings from the same manufacturing lot be radiographically inspected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001204
EISBN: 978-1-62708-219-8
... made from Cr-Mo steel (Material No. 1.7225) according to DIN 17200. It was found that the bolts were not made from a suitable alloy steel, but were welded together from two unsuitable steels, one of which lacked sufficient strength. The austenitic weld seams showed hot tears and were not welded through...
Abstract
Two bolts from the stressed structure of a church building that had broken during stressing were examined to establish the cause of fracture. The fracture of one of the first bolt occurred in a double-vee groove weld whose root was not completely welded. The second bolt had cracked outside of the weld seam closely under the head. Neither one had been particularly deformed before fracture. The composition of the head pieces corresponded approximately to manganese steel (Material No. 1 0845), a weldable construction steel with increased yield point and strength, while the shafts were made from Cr-Mo steel (Material No. 1.7225) according to DIN 17200. It was found that the bolts were not made from a suitable alloy steel, but were welded together from two unsuitable steels, one of which lacked sufficient strength. The austenitic weld seams showed hot tears and were not welded through to the root. Also, the pieces were not preheated before welding, so that stress cracks occurred in the transition zones. The second bolt was overstressed during the impact caused by the breaking of the first bolt.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001665
EISBN: 978-1-62708-231-0
...” suggested that this preexisting fracture had grown by fatigue and then, when sufficient growth had occurred, final failure occurred by brittle fracture. One possibility that was considered was that the casting had developed a “hot tear” as it was cast, and that this had gone undetected. A hot tear forms...
Abstract
Following a freight train derailment, part of a fractured side frame was retained for study because a portion of its fracture surface exhibited a rock candy appearance and black scale. It was suspected of having failed, thereby precipitating the derailment. Metallography, scanning electron microscopy, EDXA, and x-ray mapping were used to study the steel in the vicinity of this part of the fracture surface. It was found to be contaminated with copper. Debye-Scherrer x-ray diffraction patterns obtained from the scale showed that it consisted of magnetite and hematite. It was concluded that some copper was accidentally left in the mold when the casting was poured. Liquid copper, carrying with it oxygen in solution, penetrated the austenite grain boundaries as the steel cooled. The oxygen reacted with the steel producing a network of scale outlining the austenite grain structure. When the casting fractured as a result of the derailment, the fracture followed the scale in the contaminated region thus creating the “rock candy” fracture.
Image
in Premature Torquing Failures of Cast A356 Aluminum Actuators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Image
in Fatigue Fracture of a Sand-Cast Steel Axle Housing That Originated at a Hot Tear
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 1 Fracture surface of a sand-cast medium-carbon steel heavy-duty axle housing. Failure originated at a hot tear (region A), which propagated in fatigue (region B) until final fracture occurred by overload. 0.4×
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001085
EISBN: 978-1-62708-214-3
... solidification and during cooling from an elevated temperature (above 650°C, or 1200°F, for gray iron). A hot crack is less visible (less open) than a hot tear and usually exhibits less evidence of oxidation and decarburization.” A hot tear is defined as “a crack or fracture formed prior to completion...
Abstract
Liquid penetrant inspection of an ASTM A296 grade CA-15 residual heat removal pump impeller from a nuclear plant revealed a crack like indication that approximated the outer contour of the wear ring. Examination of a section containing the crack and three sections from near the main crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... around edges Hot cracking C 200: Discontinuities caused by internal tension and restraints to contraction (cracks and tears) C 210: Cold cracking or tearing C 211 (a) Discontinuities with squared edges in areas susceptible to tensile stresses during cooling; surface not oxidized...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... with adjacent indentation marks Breakage (cold) C 120 Cracking with oxidation C 121 (a) Fracture surface oxidized completely around edges Hot cracking C 200 Discontinuities caused by internal tension and restraints to contraction (cracks and tears) C 210 Cold cracking...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence...
Abstract
The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high. Recommendations include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
.... Internal bursts will occur, usually on the centerline where the metal is weaker, possibly from pipe, porosity, segregation, or inclusions. The tensile stresses on the centerline can be sufficiently high to tear the material apart internally, particularly if the hot working temperature is too high...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001821
EISBN: 978-1-62708-241-9
... of the truck, suggest the temperature in the hot-test part of the fire reached the range of >1000 °C. Examination of the microstructure adjacent to the fracture on side A showed that a large amount of localized deformation had occurred in the thinned regions adjacent to the stable tears ( Fig. 6a...
Abstract
A fire in a storage yard engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of the truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, following the girth welds that connect them to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on the metallography of the tank pieces, the approximate tank temperature at the onset of explosion was determined. Metallurgical analysis provided additional insights as well as a framework for making tanks less susceptible to this destructive failure mechanism.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001093
EISBN: 978-1-62708-214-3
... Fig. 1 Closeup view of the bolt-shank fracture surface. Note the heavy scale on the zone 1 surface. Fig. 2 SEM fractograph of a field on the zone 1 surface (see Fig. 1 ). Note the combination of tearing and intergranular fracture. Fig. 3 Optical micrograph of a portion...
Abstract
A heat-treated, cadmium-plated AISI 8740 steel bolt broke through the head-to-shank fillet while being handled during assembly. Fractographic and metallographic examination of the bolt traced the cause of failure to quench cracking, which occurred when the part was water cooled following hot heading and prior to the production run. The process chart for hot heading was changed from water quenching to air cooling following the forming operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001252
EISBN: 978-1-62708-235-8
... or hydrogen loading 1 . During forging they apparently also cause hot tears according to the determinations made here. If the data given by the manufacturer are correct it is noteworthy that the precipitates were at least in part still undissolved in spite of the long holding period at high initial forging...
Abstract
An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel developed gaping cross-cracks on all eight sides in the forging press during initial pressure application. It was reported that the steel had been melted in a basic 12-ton arc furnace, oxygenated, furnished with 42 kg of 75% ferrosilicon and 12 kg aluminum additions, alloyed with 160 kg of 80% ferromanganese, and finally deoxidized in the ladle with 42 kg calcium silicon. For metallographic examination a plate approximately 100 mm thick was cut parallel to one of the eight planes. Platelet-like particles could be discerned on the conchoidal fracture planes with the SEM. The precipitates proved to be thin and partially transparent platelets of a hexagonal crystal lattice whose parameters resemble those of AIN. The precipitates were at least in part still undissolved in spite of the long holding period at high initial forging temperature. Another block melted under the same conditions and immediately after the defective one, was forged into a gear ring without any trouble. This ring was free of grain boundary precipitates, but it contained only 0.012 % AI and 0.0102 % N.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001270
EISBN: 978-1-62708-215-0
... Fig. 1 Section of discolored part of fracture surface showing no clear origin. Dark area is discoloration from thermal processing. 1.24×. Fig. 2 Cross section of suspect area, showing a typical intergranular and branched fracture. 76×. Fig. 3 Possible tearing mechanism...
Abstract
An investigation was conducted to determine the factors responsible for the occasional formation of cracks on the parting lines of medium plain carbon and low-alloy medium-carbon steel forgings. The cracks were present on as-forged parts and grew during heat treatment. Examination revealed that areas near the parting line exhibited a large grain structure not present in the forged stock. High-temperature scale was also found in the cracks. It was concluded that the cracks were caused by material being folded over the parting line. The folding occurred because of a mismatch in the forgings and from material flow during trimming and/or material flow during forging.
1