1-20 of 358 Search Results for

hot cracking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
.... pipe hot cracking grain boundary segregation stainless steel tear ridges melt bridging microfractography induction heating frequency X6CrNiMoTi17-12-2 (titanium-stabilized austenitic stainless steel) UNS S31635 Introduction Large austenitic stainless steel piping used for manifolds...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001085
EISBN: 978-1-62708-214-3
... crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting. Castings Nuclear reactor components Repair welding Rotary pumps Weld defects Welded joints CA-15 UNS J91150 Joining-related failures Background...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
... typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld...
Image
Published: 01 January 2002
Fig. 54 Factors affecting hot cracking in weld metal More
Image
Published: 01 January 2002
Fig. 55 Factors affecting hot cracking in the base metal HAZ More
Image
Published: 01 January 2002
Fig. 34 Hot cracking that developed in a stainless steel tube weld. 10% oxalic acid electrolytic etch. 30× More
Image
Published: 15 January 2021
Fig. 37 Hot cracking that developed in a stainless steel tube weld. 10% oxalic acid electrolytic etch. Original magnification: 30× More
Image
Published: 30 August 2021
Fig. 19 Causes and prevention of hot cracking in base metal More
Image
Published: 01 December 1992
Fig. 13 Other areas of hot cracking found on hardness specimen. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
... to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... Abstract The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling...
Image
Published: 01 December 1992
Fig. 11 Flange edge crack that triggered the bottle fracture. Note weld hot crack, which occurred at the end of the flange-to-cross-frame butt weld. More
Image
Published: 30 August 2021
Fig. 16 Centerline hot crack in AISI/SAE 1020 steel More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001049
EISBN: 978-1-62708-214-3
... of the digester and of a proprietary high-nickel material on the bottom three-fourths. Examination revealed three distinct modes of deterioration. General corrosion was linked to the use of unspecified overlay metal. Cracking resulted during installation from the use of a material susceptible to hot cracking...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
... was attributed to the combination of weld porosity, many slag inclusions and the formation of brittle martensite in the HAZ. A new repair weld was made using an E312 stainless steel electrode, which provides a weld deposit that contains considerable ferrite to prevent hot cracking. Before welding, the crankshaft...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001484
EISBN: 978-1-62708-229-7
... and circumferential tensile stresses on the side in contact with the adjacent diaphragm. In the presence of the molten copper-rich alloy, these stresses gave rise to severe hot cracking. Copper Liquid metals Steam turbines Fe-0.35C-3.42Ni Liquid metal induced embrittlement The fusing of the switch...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
... and arrested 100 mm (4 in.) down the slant web. Failure analysis revealed a major deficiency in fracture toughness. The failure occurred as a brittle fracture after the formation of a welding hot crack and approximately 40 mm (1 1 2 in.) of slow crack growth. It was recommended that bridges...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001180
EISBN: 978-1-62708-219-8
... Abstract A T-piece from a copper hot water system failed. Microscopic examination of a polished section revealed a main crack and branching transcrystalline cracks running from the outer surface of the pipe into the pipe wall. The crack appearance indicated disintegration by stress-corrosion...
Image
Published: 01 December 2019
Fig. 8 Scanning electron microfractograph of crack path. Detail of Fig. 7 . Evidence of liquation cracking, a hot cracking mechanism More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001222
EISBN: 978-1-62708-225-9
... are impressions of hot cracks in the steel die. The elevated casting temperatures place such severe demands on the die material, that hot cracks are frequently formed before the minimum number of pieces (about 2000) is reached. This minimum is of necessity high in view of the costs of the dies 2...